

-Lockheed Martin Systems Integration-Owego

1801 Route 17C

Owego, NY 13827-3998

Prepared for:
Department of the Air Force

Headquarters Standard Systems Group (HQ SSG)
Maxwell Air Force Base - Gunter Annex

Montgomery, Alabama

Contract Number: F01620-96-D-0004

Document Number: GCSS-REPORT-1997-0011
Version: 3.8

Date: 08/10/01

GCSS-AF

Guide to Developing with the GCSS-AF
Integration Framework

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

i

This Page Intentionally Left Blank

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

ii

DOCUMENT CHANGE HISTORY
VERSION CHANGE DESCRIPTION (Required for changes affecting TPM,

Requirements, Configuration, Cost & Schedule)
No. Approval Date Change

Doc.
Section Narrative (of items affected)

1.0 CCB 12/15/97 Initial Release
1.1 CCB 07/02/98 3.3.2.1

5.1.6.3

SCR 69 - COM Inclusion Rules and Reuse
Paradigm
SCR 74 – REFERENCE Added to ANNEX
B, “Integrated Development Environment”.
SCR 75 – REFERENCE ADDED TO
ANNEX C, “COTS Trade Study
Architectural Criteria”.

 2.0 CCB 03/25/99 All SCR 060 – Incorporate Concepts and
Processes for systems integration.
SCR 083 – remove c4isr tables.
Updates for Core and sstr.
Obsolete Annexes A, B, and C and delete
associated references.

2.1 CCB 06/09/99 All SCR 097- Incorporate Customer Comments.
Updates for Core Security Release.

2.2 CCB 01/07/00 All SCR 0098 – Incorporate C4ISR Tables
SCR 0111 – updates for IF release 1.2

3.0
DRAFT

IPT 07/19/00 All CR-0009-Change Title from GCSS-AF
Developer’s Guide Tab B – Design and
Development to Guide to Developing With
The GCSS-AF Integration Framework
Major restructuring of the document

3.1
Draft

IPT 7/28/00 All General clean-up: Expanded acronyms for
clarity and corrected mapping of items in
Section 4 to the IF system tree

3.2
Draft

 11/30/00 All Update for if 2.0 Release and add Section 5

3.3
Draft

 02/02/01 All Restructured Sections 4 and 5 and added
Section 6-Security

3.4
Draft

 02/20/01 All Further work done on uniformity

3.5
Draft

 03/09/01 All Revision of material in Section 5.

3.6
Draft

 03/16/01 All Material added to Section 4.
Updates added to Section 5.

3.7 03/23/01 All Material added to Section 5.4.
Updates added to Section 5.

3.8 08/10/01 Updates for IF 2.2 and 2.3.
Updates to section 6 related to upgrading PD
to v3.7 and PKI based user authentication.
Remove references to PD version.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

iii

This Page Intentionally Left Blank

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

4

TABLE OF CONTENTS

1. Introduction.. 9
1.1 Purpose... 9

1.1.1 Overview.. 9
1.1.2 Purpose of this Document.. 11

1.2 Objectives .. 11
1.3 Scope.. 11

2. Reference Documents .. 11
2.1 Government Documents ... 12
2.2 Applicable Standards... 12
2.3 Contractor Documents... 15
2.4 Product Documents.. 16
2.5 Other Documents.. 16

3. GCSS-AF Architecture .. 17
3.1 Reference Architecture Overview... 17

3.1.1 Integration Framework (IF) ... 18
3.1.2 Application Framework ... 18

4. Integration Framework Content and Brief Description.. 19
4.1 Infrastructure Layer ... 19

4.1.1 Platforms ... 20
4.1.2 Operating Systems and Services... 21
4.1.3 Database Engines .. 21
4.1.4 Java Virtual Machine.. 22
4.1.5 DII COE.. 22

4.2 Integration Services Layer.. 22
4.2.1 Distributed Control ... 23
4.2.2 Messaging... 28
4.2.3 Distributed Data Access... 30
4.2.4 Distributed Communications Protocols... 32
4.2.5 Network Time Protocol.. 33

4.3 Technical Services Layer.. 33
4.3.1 Services ... 34
4.3.2 Facilities.. 42

4.4 Reusable Business Component Support... 56
4.4.1 Business Component Support ... 56
4.4.2 Web GUI Support ... 57
4.4.3 OAG Derived Components ... 57
4.4.4 Legacy Interface Component Support... 57
4.4.5 External Interface Component Support ... 57
4.4.6 Transaction Coordination Support ... 58

4.5 Service to Product Mapping... 58
4.6 How The IF Provides Services and Facilities ... 61

5. Design Guidance for GCSS-AF Applications Using the IF .. 62
5.1 Mission Application Architecture Considerations... 63

5.1.1 Reference Application Model... 64
5.1.2 Reference Application Development Process.. 68
5.1.3 Application Integration .. 86
5.1.4 Application Security Responsibilities.. 93
5.1.5 Application and Integration Framework Integration Points .. 96
5.1.6 Development Environment Notes ..103
5.1.7 Test Component Descriptions...112
5.1.8 Additional IBM Reference Material..114

5.2 Presentation...115
5.2.1 Overview..115

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

5

5.2.2 Service Use...116
5.2.3 Communications Between Layers..135

5.3 Business Logic ..136
5.3.1 Overview..136
5.3.2 Service Use..137
5.3.3 Communications Between Layers ...173
5.3.4 Design Issues Concerning Deployment ..181

5.4 Data...185
5.4.1 Overview..185
5.4.2 Service Use...185
5.4.3 Communication Between Layers ...198

5.5 Messaging Guidance..202
5.5.1 Message Transmission and Reception Types...202
5.5.2 Message Queue Configuration Considerations..204
5.5.3 Publish/Subscribe approach..214
5.5.4 Messaging from within the Application Server...215
5.5.5 Messaging from an Application outside the Application Server ..216

5.6 USING THE INTEGRATION FRAMEWORK LOG FACILITY...217
5.6.1 Log4j Version 0.8.5b Package Overview...217
5.6.2 Integration Framework 2.0 Implementation Guidelines ..223
5.6.3 A Note Regarding Tivoli Compatibility..226

6. Securing the Application ...227
6.1 Overview of IF Security..227

6.1.1 Security Requirements ...233
6.1.2 The ISO Security Model ..236
6.1.3 Non-Technical Aspects of Security ...239

6.2 Authentication...239
6.2.1 User Authentication..242
6.2.2 Application Authentication ...246

6.3 Access Control ..248
6.3.1 Planning for Access Control ...250
6.3.2 Setting up ACLs ..262
6.3.3 Setting Up Groups..266
6.3.4 Setting Up User Data..267
6.3.5 Access Control and Web Objects...268

6.4 Non-Repudiation ..272
6.4.1 User Digital Signatures..273
6.4.2 Application Digital Signatures ...273

6.5 Confidentiality ..274
6.5.1 Protecting Static Data...274

6.6 Integrity ..280
6.6.1 The GCSS-AF Enclave..280
6.6.2 The DMZ..282
6.6.3 Firewall Considerations...283
6.6.4 Multi-Level Security ..286

6.7 Audit and Alarms ..286
6.7.1 Logging Framework Security Events..287

6.8 PKI and Key Management ...302
6.8.1 User PKI ...302
6.8.2 Application PKI...302

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

6

TABLE OF FIGURES
Figure 1: GCSS-AF Document and Model Inter-relationships... 10
Figure 2: GCSS-AF Reference Architecture... 17
Figure 3: Integration Framework Top-Level Packages... 19
Figure 4: Infrastructure Layer Packages of the Integration Framework .. 20
Figure 5: Integration Services Packages of the Integration Framework .. 23
Figure 6: Technical Services Packages of the Integration Framework .. 34
Figure 7: Service Packages of the IF Technical Services ... 34
Figure 8: High-Level Packages Under Facilities of the Integration Framework.. 42
Figure 9: Packages of the User Interface Common Facilities .. 43
Figure 10: Packages of the Information Management Common Facilities ... 51
Figure 11: Internationalization Package .. 54
Figure 12: Packages of Task Management Common Facilities... 55
Figure 13: Packages of the Reusable Business Component Support .. 56
Figure 14: N-Tier (Mission Application) Architecture ... 64
Figure 15: Top-Level Mission Application Reference Design.. 66
Figure 16: Model-View-Controller Design Pattern ... 66
Figure 17: Model-View-Controller Extended Design Pattern ... 68
Figure 18: Reference Mission Application Development Process.. 70
Figure 19: Mission Application - Analysis Model View.. 71
Figure 20: Mission Application - Design Model View... 75
Figure 21: IF Naming Conventions Relative to Application Interaction ... 90
Figure 22: Namespace and Naming Conventions Mapping Example .. 91
Figure 23: IF Routing Relative to Application Interaction... 93
Figure 24: Application Security Integration Points and Considerations.. 94
Figure 25: Integration Framework Interface and Configuration Integration Points... 98
Figure 26: Test Components UML Analysis Class Diagram...112
Figure 27: Test Component UML Design Packages ...114
Figure 28: Example Servlet Hierarchy...118
Figure 29: IFServlet Source View..120
Figure 30: Add Part Control Flow Scenario..121
Figure 31: Example of IFPropertyManager Abstract Method ...122
Figure 32: Example of Abstract Method Implementation of initializeServerConnection...124
Figure 33 Example of SessionInfoStruct Code...125
Figure 34: Example of PDCSessionAO Interface Code ...125
Figure 35: Example of findByPrimaryKey code..130
Figure 36: Example of getInitalContext code...131
Figure 37: Example of Servlet doPostMethod Usage..132
Figure 38: Example Code taken from JSP Page...134
Figure 39: Pictorial Representation of an Enterprise JavaBean Component...140
Figure 40: Locating and creating an EJB Home ...146
Figure 41: Locating a WAS-EE deployed component...147
Figure 42: Bean managed transaction..149
Figure 43: Example of host/resources/factory-finders/<ServeName>-server-scope-widened Code153
Figure 44: BOD Structure ..155
Figure 45: IFCBSecurityInfoSFigure 8: gcssafAuthenticateUser Code Example ..161
Figure 46: Policy Director Object Space for PDC Test Component ..164
Figure 47: Policy Director Object Space for PDC Test Component (Part A)...164
Figure 48: Policy Director Object Space for PDC Test Component (Part B) ...165
Figure 49: Example IDL from PDCSessionModule of the PDC Test Component..167
Figure 50: Example IDL from com_lmfs_framework_testcomponents_requisition_OrderingTie.java of the

Requisition Component Test Component...168

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

7

Figure 51: Example of Obtaining Parameters Required by the gcssAccessDecisionAllowed Method........................170
Figure 52: Code Example of Finding IFCBSecInfo Home ..170
Figure 53: Code Example of Creating IFCBSecurityInfo Instance..171
Figure 54: Code Example of Invoking the gcsafAccessDecisionAllowed Method..172
Figure 55: Use of the MQSeries application adaptor by a Component Broker application..175
Figure 56: Sending a message using TMOutbound...177
Figure 57: Getting the Outbound Message home...177
Figure 58: Receiving a correlated message using TMOutbound...179
Figure 59: Example of Trigger Monitor Application Code..181
Figure 60: Illustration of Workload Managed Configuration ..184
Figure 61: Business, data, and Persistent Object Relationships..188
Figure 62: Example Transaction Emulation Across Components...201
Figure 63: DISA Naming Conventions Model...211
Figure 64: Parent/Child Hierarchy..214
Figure 65: Model of Communication Between MQSeries Applications and Component Broker CORBA

Components ...215
Figure 66: Example of Log Output Code Using PatternLayout..220
Figure 67: Compile-Time Directive Usage Example ..221
Figure 68: Example Code of Compile -Time Follow up ...221
Figure 69: Example Code for Assigning Foo Class to the cat Category..224
Figure 70: Example Code to Create a Sub-Category in the Class Foo...224
Figure 71: Example Code for Log Output Appender A1..225
Figure 72: Example Code for Log Output Appender A2..225
Figure 73: Operational Diagram: Authentication & Authorization ..228
Figure 74: Example of PDCAddServlet Code..244
Figure 75: Example Queue Manager Channel Exits Code...247
Figure 76: IF Test Applications Actions..264
Figure 77: Example Policy Director Object Space WebSeal branch..272
Figure 78: GCSS-AF Enclave Model I ..276
Figure 79: GCSS-AF Enclave Model II...281
Figure 80: Typical One-router, One-firewall Internet Connection Configuration ...284
Figure 81: Model of Log File Generation..290

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

8

TABLE OF TABLES
Table 1: Service to Product Mapping: Infrastructure .. 58
Table 2: Service to Product Mapping: Integration Services... 58
Table 3: Service to Product Mapping: Technical Services/Services .. 59
Table 4: Service to Product Mapping: Technical Services/Facilities ... 59
Table 5: Service to Product Mapping: Reusable Business Component ... 60
Table 6: Sample Identification of Code Template, Base Class, and Helper Class... 62
Table 7: Presentation - Analysis Component Type to Design Component Type Mapping.. 81
Table 8: Business Logic - Analysis Component Type to Design Component Type Mapping... 82
Table 9: Data - Analysis Component Type to Design Component Type Mapping.. 83
Table 10: Design Component Type to Unique Implementation Component Type Mapping... 85
Table 11: Analysis Phase Development Environment Items ...104
Table 12: Design Phase Development Environment Items ..105
Table 13: Implementation Phase Development Environment Items ...107
Table 14: Integrated Development Environment Items ..108
Table 15: Test Tool Categories ...111
Table 16: Servlet Property File Contents...123
Table 17: Servlet Development Dependencies...126
Table 18: IF Business Logic Component Services ..137
Table 19: EJB & CORBA Server Components Security Activities..159
Table 20: MA Authentication Scenarios..160
Table 21: IF Policy Director Application Object Namespace (Recommendation)...163
Table 22: Example Policy Director Access Control Lists (ACL) ...166
Table 23: Parameters of the GCSSAF/AccessDecisionAllowed Method..168
Table 24: IF Data Layer Component Services..185
Table 25: Cardinality Example ..191
Table 26: Log4j Packages ..217
Table 27: Chained Priorities Examples..219
Table 28: Multiple Appender Example ..223
Table 29: Message Priorities..224
Table 30: Authentication Matrix...240
Table 31: Pseudo-Supply Test ACLs ...259
Table 32: Access Control List ...264
Table 33: Policy Director Built-in Permissions..264
Table 34: Policy Director Object Space WebSEAL Branch..271
Table 35: Confidentiality Network Traffic Matrix ..277
Table 36: Explanation of DISA Prioritization Scheme ...293
Table 37: Recommendation of Events for IF Use Cases ..294
Table 38: Application PKI ...303

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

9

1. Introduction
GCSS-AF provides a component-based Reference Architecture Framework that serves as the
Integration and Application Framework Layers for GCSS-AF functional capabilities consistent
with the Defense Information Infrastructure Common Operating Environment (DII COE), the
Joint Technical Architecture - Air Force (JTA-AF), and based on commercial open standards.
The GCSS-AF Reference Architecture Framework also provides common interfaces for those
functions that either directly or indirectly support Command and Control (C2) or share
information with C2 Systems.

It is assumed that the reader is cognizant of Object Oriented Analysis and Design methods, the
Unified Modeling Language (UML), Open Applications Group (OAG) concepts and
specifications, Object Management Group (OMG) concepts and specifications, and GCSS-AF
Requirements Specifications. Specific reference documents are provided in Section 1.

1.1 Purpose

1.1.1 Overview
Application Developers associated with GCSS-AF will be performing development in a new
environment with new processes, techniques, and constraints. Guidance is needed to understand
the overall integration environment. This document is one of an interrelated set of four primary
sources of information for developing applications within GCSS-AF:

A. Global Combat Support System - Air Force (GCSS-AF) Architecture Overview and

Description

B. Global Combat Support System - Air Force (GCSS-AF) Application Framework
Developer’s Guide

C. Global Combat Support System - Air Force (GCSS-AF) Guide to Developing with the
GCSS-AF Integration Framework

D. Global Combat Support System - Air Force (GCSS-AF) Systems Solutions UML Model

In addition, there should be a Developer’s Guide unique to the Business Area under
development. The document and model interrelationships are depicted in Figure 1.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

10

GCSS-AF Architecture
Overview and Description

Guide to Developing
with the GCSS-AF

Integration Framework

GCSS-AF Application
Framework

Developer’s Guide

GCSS-AF
Systems Solutions

UML Model

GCSS-AF
Application-Unique

Developer’s Guide

Figure 1: GCSS-AF Document and Model Inter-relationships

For the Application Developer to obtain a complete understanding of the definitions, concepts
and processes, the information above should be read/used in the order above (A through C with
references to D, as necessary) and sequentially within each document to build a complete
understanding of the development methodology.

In addition, the Application Developer should review the following documents to understand the
overall GCSS-AF Requirements as well as the specific Integration Framework requirements:

E. Global Combat Support Systems – Air Force System Requirements Specification

F. Global Combat Support System - Air Force (GCSS-AF) Integration Framework
Enterprise Systems Management (ESM) Requirements Subsystem Specification

G. Global Combat Support System - Air Force (GCSS-AF) Integration Framework Security
Requirements Subsystem Specification

H. Global Combat Support System - Air Force (GCSS-AF) Integration Framework Data
Warehouse Services Requirements Subsystem Specification

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

11

1.1.2 Purpose of this Document
The purpose of this Guide to Developing with the GCSS-AF Integration Framework is to provide
the Application Developers with information to enable them to understand and utilize the
capabilities provided by the GCSS-AF Integration Framework (IF). This guide is also intended
to direct developers to additional information required to develop applications employing the IF
capabilities.

1.2 Objectives
The primary objective of this document is to enable the Application Developers to determine the
services/facilities/capabilities of the GCSS-AF IF, which can be employed in the application and
which are needed for the Target State Application Architecture.

1.3 Scope
This document is composed of the following sections:

Section 1: This section provides an Introduction, Purpose and Scope of this document.

Section 2: This section contains lists of Reference Documents.

Section 3: This section contains an overview description of the GCSS-AF Architecture,

including a Systems View of the Integration and Application Framework layers.

Section 4: This section describes the GCSS-AF IF content and description.

Section 5: This section contains Design Guidance for GCSS-AF Applications.

Section 6: This section describes the Security solution and services provided by the GCSS-

AF IF.

Appendix A: Stand alone document GCSS-REPORT-1997-0011 Appendix A that contains a

description and intended use of each helper and utility class that is delivered with
the Integration Framework.

For a list of Acronyms and Glossary of Terms, reference the GCSS-AF Developer’s Guide –
Architecture Dictionary and Acronyms; GCSS-REPORT-1999-0100.

2. Reference Documents
The documents in this section are not all explicitly referenced in this document. However, it is
important to review and use these documents as they provide pre-requisite information relevant
to understanding the overall GCSS-AF.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

12

2.1 Government Documents

AF Policy Directive 16-5; Planning, Programming, and Budgeting System, 29 July 1994
C4ISR Architecture Framework; Version 2.0; 18 December 1997

Defense Information Infrastructure (DII) Common Operating Environment (COE), Developer
Documentation Requirements; Version 2.0; 23 January 1998

Defense Information Infrastructure (DII) Common Operating Environment (COE), How to
Segment Guide.

Defense Information Infrastructure (DII) Common Operating Environment (COE), Integration
and Runtime Specification (I&RTS); Version 4.0; October 1999

Defense Information Infrastructure (DII) Common Operating Environment (COE), Office
Automation Software Requirements Specification (SRS); V3.3; 11 January 1998

Defense Information Infrastructure (DII) Common Operating Environment (COE), Security
Software Requirements Specification (SRS); Version 4.0; 20 October 1998

Defense Information Infrastructure (DII) Common Operating Environment (COE), Software
Quality Compliance Plan.

Defense Information Infrastructure (DII) Common Operating Environment (COE) User Interface
Specifications v 3.0 (incl Style Requirements of DII Compliance as Appendix I); 8 March 1998

Department of Defense (DoD) Joint Technical Architecture; Version 3.0; 15 November 1999

DoD 5200.28-STD, Department of Defense Trusted Computer System Evaluation Criteria;
December 1985 [Orange Book]

DoDD 5400.4, Provision of Information to Congress, 30 January 1978

DID DI-IPSC-81433 (MIL-STD-498), System/Subsystem Specification (SSS); 94-12-05
DII-AF Chief Architects’ Office Position Paper No. CAO-002; Use of Windows ’95 & ’98;
06/26/98

2.2 Applicable Standards

AFI 33-129; Transmission of Information Via The Internet; 1 August 1999

AFI 33-202; Computer Security; 1 February 1999 (replaces AFSSI 5102 COMPUSEC For
Operational Systems, 23 Sept 1996)

AFI 35-119; Electronic Mail Management and Use

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

13

AFI 35-205; Air Force Security and Policy Review Program

AFM 33-229, Controlled Access Protection, 1 Nov 1999

AFMAN 33-229, Controlled Access Protection; 1 November 1997

AFSSI 5024, Volume 1, The Accreditation and Certification Process¸1 Sep 97

AFSSI 5024, Volume 2, The Certifying Official’s Handbook, 1 Sep 1997

AFSSI 5024, Volume 3, Designated Approving Authority Handbook, 20 Nov 1998

AFSSI 5024, Volume 4, Type Accreditation, 10 Sep 97

AFSSI 5027, Network Security Policy, 27 Feb 1998

AFSSM 5018, Risk Analysis, 1 Feb 1997

ANSI-X3.135-1992, 1992, Information Systems - Database Language - SQL with Integrity
Enhancements)

CJCS Manual 6231.03, 2 Jun 95, Manual for Employing Joint Data Communications Systems -
Joint Record Data Communications

Component Object Model (COM); Microsoft Corp.

Common Object Request Broker: Architecture and Specification; Revision 2.3.1; October 1999
[OMG]

Deputy Secretary of Defense (OSD) Memorandum, Subject: Management Reform Memorandum
#16 - Identifying Requirements for the Design, Development, and Implementation of a DoD
Public Key Infrastructure; 08 August 1997

FIPS PUB 113, Computer Data Authentication, 30 May 1985

FIPS PUB 127-2, Standard Query Language (SQL), 2 June 1993

FIPS PUB 140-1, Security Requirements for Cryptographic Modules; 11 January 1994

FIPS PUB 161-2, Electronic Data Interchange (EDI), 29 April 1996

FIPS PUB 180-1, Secure Hash Standard, 17 April 1995

FIPS PUB 186-2, Digital Signature Standard (DSS), 27 January 2000

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

14

GAO/AIMD-00-21.3.1, Standards for Internal Control in the Federal Government, November
1999

IEEE 1003.1-1990, ISO/IEC IS 9945-1:1990, 1990, IEEE Standard for Information Technology
- Portable Operating System Interface (POSIX) - Part 1: System Application Program Interface
(API) [C Language]

IEEE 1003.1b-1993, 1993, IEEE Standard for Information Technology - Portable Operating
System Interface (POSIX) - Part 1: System Application Program Interface (API) - Amendment
1: Real-Time Extension [C Language]

IEEE 1003.2-1994, 1994, IEEE Standard for Information Technology - Portable Operating
System Interface (POSIX) - Part 2: Shell and Utilities
ISO IS 9579, Aug 1992, Generic Remote Database Access
ISO/IEC 9075:1992, Information Technology --- Database Languages --- SQL
ISO/IEC 9075-3:1995 Information Technology—Database Languages—SQL—Part 3: Call-
Level Interface (SQL/CLI)

Microsoft® OLE DB 2.0 Programmer’s Reference and Data Access SDK

MIL-STD-187-700, 01 Jun 92, Interoperability and Performance Standards for the Defense
Information System

MIL-STD-2045-14502, Internet Transport Profile for DOD Communications

MIL-STD-2045-17503, Internet Message Transfer Profile for DOD Communications

MIL-STD-2045-17505, Internet Domain Name System (DNS) Profile for DOD
Communications, 29 Jul 1994

MIL-STD-2045-17506, Internet Remote Login Profile for DOD Communications, 29 Jul 1994

MIL-STD-2045-17507, Internet Network Management Profile for DOD Communication

OMB Circular A-127, Financial Management Systems

Open Applications Group Common Middleware API Specification (OAMAS), Release 1.0

Open Applications Group Integration Specification (OAGIS), Release 6.2

Open Document Management API (ODMA), Version 2.0, September 19, 1997

OSD Memorandum, Subject: Interim Guidance for the Department of Defense (DoD) Public
Key Infrastructure (PKI); 11 August 1998

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

15

OSD Memorandum, Subject: Public Key Infrastructure (PKI) Services for the Defense
Information Infrastructure (DII); 19 August 1997

Programming Interface (Interface 2 & 3) Specification; (WFMC-TC-1009 - Specification V 2.0);
(WFMC-TC-1013 - Naming Conventions V 1.4)

RFC 1094, Mar 89, Network File System Protocol Specification

RFC 1144, Feb 90, Serial Line Interface Protocol (SLIP) Specification

RFC 1305, Mar 92, Network Time Protocol (Version 3) – Specification

RFC 1661, Jul 94, Point-to-Point Protocol (PPP) Specification

RFC 2030, Oct 96, Simple Network Time Protocol (SNTP)

RFC 768, Aug 80, User Datagram Protocol (UDP) Specification RFC 791, Sep 81, Internet
Protocol (IP)

RFC 792, Sep 81, Internet Control Message Protocol Specification

RFC 793, Sep 81, Transmission Control Protocol (TCP)

RFC 822; Aug 82, Standard for the Format of ARPA Internet Text Messages
The X/Open CAE Specification “Data Management: SQL Call-Level Interface (CLI)”
Workflow Management Coalition (WfMC) Interface 1 – Process Definition Interchange V 1.0
Beta; (WfMC-TC-1016-P)

Workflow Management Coalition (WfMC) Interface 2 - Workflow Client Application

Workflow Management Coalition (WfMC) Interface 4 – Interoperability; Abstract Specification
(WFMC-TC-1012, 20-Oct-96, 1.0); Internet E-mail MIME Binding (WFMC-TC-1018, 18
September 98, 1.1)

Workflow Management Coalition (WfMC) Interface 5 - Audit Data Specification; (WFMC-TC-
1015, 1-Nov-96, 1.0)

2.3 Contractor Documents
Global Combat Support System - Air Force (GCSS-AF) Architecture Overview and Description
GCSS-REPORT-1997-0010.

Global Combat Support System - Air Force (GCSS-AF) Application Framework Developer’s
Guide, PROJ-2000-GCSSAF-0371.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

16

Global Combat Support System - Air Force (GCSS-AF) Guide to Developing with the GCSS-AF
Integration Framework, GCSS-REPORT-1997-0011.

Global Combat Support System - Air Force (GCSS-AF) Systems Solutions UML Model

Global Combat Support System - Air Force (GCSS-AF) System Requirements Specification;
GCSS-REQ-1997-0001.

Global Combat Support System - Air Force (GCSS-AF) Integration Framework Enterprise
Systems Management (ESM) Requirements Subsystem Specification, GCSS-SPEC-1999-0110.

Global Combat Support System - Air Force (GCSS-AF) Integration Framework Security
Requirements Subsystem Specification, GCSS-SPEC-1999-0111.

Global Combat Support System - Air Force (GCSS-AF) Integration Framework Data Warehouse
Services Requirements Subsystem Specification, GCSS-SPEC-1999-0112.

Global Combat Support System - Air Force (GCSS-AF) Developer’s Guide – Architecture
Dictionary and Acronyms; GCSS-REPORT-1999-0100.

Global Combat Support System - Air Force (GCSS-AF) Guide to GCSS-AF Compliance; PROJ-
2000-GCSSAF-0315.

Global Combat Support System – Air Force (GCSS-AF) Systems Security Policy; 10 Oct 97,
HQ SSG/ENI, Maxwell Air Force Base-Gunter Annex.

Integration Framework Software Version Description Document, GCSS-REPORT-1998-0098.

2.4 Product Documents

IBM MQSeries V5.1 Documentation

IBM Policy Director V3.0 Documentation

IBM WebSphere Advanced Edition V3.0 Documentation

IBM WebSphere Enterprise Edition V3.0 Documentation

ORACLE Database Documentation

Unified Modeling Language (UML), Rational Software Corporation,
http://www.rational.com/uml/resources/index.jtmpl

2.5 Other Documents
Unified Software Development Process by Ivar Jacobson, Grady Booch, and James Rumbaugh

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

17

Component Software Beyond Object-Oriented Programming, Clemens Szyperski, Addison-
Wesley, 1998
3. GCSS-AF Architecture

3.1 Reference Architecture Overview
The Layered System View of the Reference Architecture Model, shown in Figure 2: GCSS-AF
Reference Architecture, is defined to support distributed component-based applications
developed for a distributed environment. This architecture also provides a structure that will
enable interfacing with the monolithic applications that exist as Legacy systems as well as
Legacy client-server applications. Each layer of the Reference Architecture is built using
capabilities from the layers below it as needed.

Figure 2: GCSS-AF Reference Architecture

The GCSS-AF Reference Architecture is composed of 5 layers grouped into two major
frameworks. The Integration Framework supplies the facilities and services that are utilized to
build and execute mission applications and are DII COE level 6 compliant (with a goal of level
7). The Application Framework provides reusable business components and the business object
interfaces that implement the mechanisms for communication among business components and
should also be DII COE level 6 compliant (with a goal of level 7).

A Mission Application (MA) implemented using this Reference Architecture is composed of
pieces of each layer starting at the bottom, building the system by identifying and using
capabilities from each layer, in turn, to satisfy the system requirements.

Roles and
ResponsibilitiesFrameworks

DII
COE

Application
Developer (AD)

Integration
Integrator: Interoperability specification

Integration
Framework

Developer (IFD)

Application
Framework

Integration
Framework

Applications

Infrastructure

Integration Services

Technical Services

 (Business Object Interfaces

 Reusable Business Components

/
)

 Cross-Business
 Interoperability

Development
AD: Application-unique services

AD or IFD: Common services,
based on TSG/ESG decision

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

18

The Roles and Responsibilities in Figure 2: GCSS-AF Reference Architecture indicate which
portion of the Reference Architecture is being/will be developed by the Integration Framework
Developer (IFD), the Integrator, and the Applications Developer (AD). The IFD is responsible
for all aspects of the GCSS-AF IF. The Integrator is responsible for the Interoperability
Specification. The AD is responsible for all Application-unique aspects. If there are Application-
unique services that are required for Cross-Business Interoperability, then the AD will develop
that service. If there are common services in the Cross-Business area, then the Technical
Steering Group (TSG) and Executive Steering Group (ESG) will decide on whether the IFD or
AD will accomplish this development. For specific details on Methodology of GCSS-AF IF
Compliance, the process for enabling GCSS-AF IF Compliance, Exception Conditions, and
Application Validation and Integration, reference the Guide to GCSS-AF Compliance.

3.1.1 Integration Framework (IF)
The IF provides the foundation and building blocks upon which all GCSS-AF applications
should be built. The availability of this foundation enables cost and schedule savings
through shared use of developed and documented facilities and services and reduces the
effort required to integrate modernized and newly developed systems.

The IF is composed of the Infrastructure, Integration Services and Technical Services Layers.
The facilities and services provided by these layers are being centrally developed and
implemented for the Combat Support community as the GCSS-AF IF. The current and future
IF services are described in Section 4. A summary of these layers of the architecture is
provided below.

The lowest layer, Infrastructure , provides the Operating System (OS) and major system
level COTS packages like the Database Engine. This layer also contains the hardware, such
as clients, servers, Local Area Network (LAN)/Wide Area Network (WAN), network
devices, and cabling.

Moving up to the next layer, Integration Services provides the communication protocols
and methods such as CORBA, MOM or COM+ that are most often identified as Middleware.

The next layer is the Technical Services which provides distribution, presentation, data and
security as well as enterprise sys tem management services and facilities required to enable
the construction and operation of component based systems.

3.1.2 Application Framework
The Application Framework is composed of the Cross-Business Interoperability layer and
the Applications layer. A summary of these layers is provided below. The capabilities of
these layers are implemented via individual mission applications.

The Cross-Business Interoperability layer defines the cross business area and business area
specific functional components and the associated data model. Business areas such as
financial, logistics, personnel and medical are represented here. This level also defines and
implements the rules for communications, interoperability capabilities and constraints among
the Business Components within the architecture.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

19

Finally, the Applications layer contains the typically coarse-grained Business Components,
which implement the business logic that is specific and unique to the functionality being
provided to the user. These components implement what is not available in any other layer.
These components shall also be DII COE compliant. This layer also encompasses the
development tools required to construct and assemble components.

4. Integration Framework Content and Brief Description
This section provides a brief high level description of each of the categories and capabilities
provided by the GCSS-AF IF. The intent of this section is to provide an orientation to the
capabilities and services provided by the Integration Framework (IF). The specific versions of
IF products relative to an IF release can be found in the Integration Framework Software Version
Description Document.

It is important to recognize that the following represents both current and anticipated future IF
services and capabilities. The description for each category, service, or capability will identify
the release in which they appear or as a Future Capability. Any items which are Future
Capabilities will be marked “Note Future Capability:” and in Violet text. Bold Face font
throughout the document indicates an example of code as it needs to appear when it is
implemented.

The GCSS-AF Systems Solution UML Model documents the extent to which each service is
provided in the current release. Figure 3: Integration Framework Top-Level Packages illustrates
the top- level system/software packages provided and/or addressed by the Integration Framework.

Figure 3: Integration Framework Top-Level Packages

4.1 Infrastructure Layer
The Infrastructure Layer defines the baseline hardware and software technology required to
enable rapid development and deployment of scalable component-based applications within
performance, cost, and reliability constraints (e.g. operating systems, database engines,
workstations, servers, networking hardware and software). The products selected for this level
are compliant with the standards and constraints defined in the Technical View of the GCSS-AF
Reference Architecture. These products establish the hardware and system software baseline for
the Reference Architecture.

Integration
Framework

Application
Support

Technical
Services

Integration
Services

Infrastructure
Reusable Business

Component
Support

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

20

Figure 4: Infrastructure Layer Packages of the Integration Framework identifies the
system/software packages provided and/or addressed by the Infrastructure layer of the
Integration Framework.

Figure 4: Infrastructure Layer Packages of the Integration Framework

4.1.1 Platforms
This category identifies the hardware platforms the IF supports. The developer shall remember
to consider specifics of the platform in regards to the Operating System employed on the
platform. Note that the platforms identified are, by GCSS-AF System Specification, restricted
to those supported by the DII COE.

A Unix operating system running on an expandable multi-processor Sun or HP computer should
be strongly considered where significant future expansion of processing capacity is anticipated or
high processing capacities are required.

4.1.1.1 Sun Microsystems
Computers from Sun Microsystems are supported as servers.

4.1.1.2 Hewlett-Packard (HP)
HP/UX based computers employed as database servers support both the HP/UX and Windows
based computers from HP. Windows-based servers from HP are in the Intel platform category.

Note: HP/UX web and application servers will not be available until a future release.

4.1.1.3 Intel (includes x86-compatible)
Intel and x86-compatible computers are supported as both client and servers. Servers require
Windows NT Server while clients can use Windows NT, Windows 95, or Windows 98.

Infrastructure

Java Virtual
Machine DII COEOperating Systems

and Services

Windows 95/98

Solaris

HP/UX

Windows NT

Windows 2000

Platforms

Sun

HP

Intel

Networks and
Network Devices

Database Engines

Sybase
Database Engines

IBM DB2
Database Engines

Oracle Database
Engines

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

21

4.1.1.4 Networks and Network Devices
The processing center and supporting agency typically provide and specify the networks and
network devices for that center (e.g. DISA, AFPCA, and BNCC). However, the IF specifies the
use of CISCO Local Director to front end the Security Services Web Proxies to provide load
balancing and fault tolerance.

4.1.2 Operating Systems and Services
This category identifies the Operating Systems (OS) and associated services supported by the IF.
Also note, that the Operating Systems identified are, by GCSS-AF System Specification,
restricted to those supported by the DII COE. The IF supports both Unix and Windows
Operating Systems.

Note Future Capability: These Operating Systems provide POSIX 1003.1 APIs, which
C++ components employ through developer created “wrappers,” accessed by Java
components. The current IF does not provide “wrappers” for Java access.

4.1.2.1 Solaris
The IF supports the Solaris (Unix) operating system.

4.1.2.2 HP/UX
HP/UX based computers employed as database servers supporting the HP/UX (Unix) operating
system.

Note Future Capability: HP/UX web and application servers will not be available until
a future release.

4.1.2.3 Windows NT
The IF supports the Windows NT operating system as a server and as a User Workstation Client.

4.1.2.4 Windows 95/98
The IF supports Windows 95 and Windows 98 operating systems as User Workstation Clients.

4.1.2.5 Windows 2000
Note Future Capability: The Windows 2000 operating system is anticipated to be
supported in a future IF release.

4.1.3 Database Engines
This category identifies the database “engines” which are supported or planned for support. The
data access services of the products identified here are listed under Technical
Services/Facilities/Information Management Common Facilities/Information Storage and
Retrieval Facility/Data Access Services in the GCSS-AF Systems Solutions UML Model.
Note that the actual database products provide both the engines and the data access services.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

22

Oracle
The Oracle RDBMS product is supported. The Oracle product identified here is only the
RDBMS the developer should not construe it as other than the RDBMS.

IBM DB2
The IF supports the IBM DB2 RDBMS product. It is included with the IBM WebSphere
Advanced and Enterprise Editions.

Sybase
The IF will support the Sybase RDBMS, if required in a future release.

Other
Other databases, including Object Databases, shall fall under consideration for future releases as
required.

4.1.4 Java Virtual Machine
The Java Virtual Machine (JVM) allows a Java application to run on any operating system. Java
Virtual Machines operate on the supported Servlet engines and application servers. While the
GCSS-AF supported Web Browsers support a JVM, for security reasons, the use of Applets is
strongly discouraged.

IBMs JVM
The JVM, provided with the IBM WebSphere product line, is required on those servers running
the WebSphere Servlet engine and application server.

Sun Microsystems JVM
The Sun Microsystems JVM is supported with the Netscape Web Browser.

4.1.5 DII COE
The DII COE follows a mandate that specifies installation on all servers employed for GCSS-AF
as well as required by DISA on servers managed by an RSA. The primary use of the DII COE
within GCSS-AF is segmentation, the use of the COE installer, and some of the security-related
utilities.

4.2 Integration Services Layer
The Integration Services layer defines the communications protocols and methods used to
support communications among components as well as Legacy systems (e.g., CORBA, MOM,
COM+, JDBC, HTTP, IIOP). The Integration Services include Distributed Control, Messaging,
Distributed Data Access Mechanisms, and Distributed Communications Protocols. Products
typically referred to as Middleware fall into this category.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

23

Figure 5: Integration Services Packages of the Integration Framework identifies the Integration
Services related packages provided and/or addressed by the Integration Framework.

Figure 5: Integration Services Packages of the Integration Framework

4.2.1 Distributed Control
This category of services provides the basic capabilities required for distributed computing. It
includes both complimentary [CORBA and Enterprise JavaBeans (EJB) - Java 2 Platform
Enterprise Edition (J2EE)] and competing [CORBA - EJB/J2EE and COM+] approaches to
distributed computing. For Java-based applications, the use of the EJB/J2EE is recommended.
For C++-based applications, CORBA is recommended. Note that for interoperability, the IF
supported EJB/J2EE server product provides an underlying CORBA implementation. Rapidly
emerging application server technologies supply both the CORBA and EJB/J2EE capabilities.

Note Future Capability: The applicability and use of COM+ has not yet been defined
for GCSS-AF. However, its use may be restricted to Windows client workstations due to
the unavailability of COM+ on Unix platforms. In addition, the selection of a bridge
product to support interoperability between CORBA and COM+ has not been made. It
will be a decision in future releases when required for GCSS-AF.

In addition, the use of Distributed Computing Environment (DCE) is included within the
Integration Framework only because several of the products comprising the Integration
Framework employ DCE now.

Distributed Comm.
Protocols

Distributed Data
Access

JDBC

ODBC

SQLNet

Integration
Services

CORBA

COM+

Enterprise Java
Beans

Enterprise Java
Platform

Enterprise Java
Services

Distributed
Control

Application Server

DCE

WebSphere

Messaging

Message Oriented
Middleware

OAMAS

Container
Managed Message

Message Broker

Network Services

Network Time
Protocol

Domain Name
Servers

Network
Dispatchers

CISCO Local
Director

CISCO Distributed
Director

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

24

4.2.1.1 CORBA
CORBA is an architecture and specification for creating, distributing, and managing distributed
program object in a network. It allows programs at different locations and developed by
different vendors to communicate in a network through an “Interface Broker.” A consortium of
vendors through the Object Management Group developed CORBA.

The essential concept in CORBA is the Object Request Broker (ORB). ORB support in a
network of clients and servers on different computers means that a client program (which may
itself be an object) can request services from a server program or object. It does not have to
understand where the server is in a distributed network or what the interface to the server
program looks like. To make requests or return replies between the ORBs, programs use the
Internet Inter-ORB Protocol (Internet Inter-ORB Protocol) that maps requests and replies to the
Internet’s Transmission Control Protocol layer in each computer.

As supported within the GCSS-AF enterprise, CORBA is intended for distributed computing
within an application (or business component) and for interaction with IF services and facilities.
Use of CORBA as the communications mechanism between applications, especially those
located at different processing centers is discouraged due to significant firewall issues. In
addition, (synchronous) CORBA invocations across a Wide Area Network bring along
significant latency and reliability issues. Use of Messaging Services mitigates these issues.
The CORBA implementation supported by the current IF is the IBM ORB included with the
IBM WebSphere Enterprise Edition (Component Broker) product. This generally corresponds to
the OMG CORBA 2.3 version.

To obtain more detail on OMG CORBA access the OMG web site at http://www.omg.org. For
specific, CORBA and services implementation details refer to the associated Application Server
vendor web sites identified in Section 4.2.1.5 Application Server and subsections.

4.2.1.2 Java 2 Platform, Enterprise Edition
Enterprise JavaBeansTM (EJB) technology defines a model for the development and deployment
of reusable JavaTM server components. Components are pre-developed pieces of application
code that the developer assembles into a working application system. Java technology currently
has a component model called JavaBeansTM, which supports reusable development components.
The EJB architecture logically extends the JavaBeans component model to support server
components. Enterprise Java is the preferred architecture for new and re-engineered
applications.

Enterprise JavaBeans
This category encompasses Entity Beans, Session Beans, Servlets, and Java Server Pages (JSPs).
The Enterprise JavaBeans API defines a server component model that provides portability for
application servers and implements automatic services on behalf of the application components.
The Java Servle ts and Java Server Pages APIs support dynamic HTML generation and
management for browser clients. The API implementations supported by the current IF are those
included with the IBM WebSphere product.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

25

Enterprise Java Services
The Enterprise Java platform consists of several standard Java Application Programming
Interfaces (APIs) that provide access to a core set of enterprise-class infrastructure services.
These include Distributed Communication services, Naming and Directory services, Transaction
services, Messaging services, Data Access and Persistence services, and Resource-sharing
services. The Enterprise Java APIs provide a common platform and vendor neutral interface to
the underlying infrastructure services, regardless of the actual implementation. The API
implementations supported by the current IF are those included with the IBM WebSphere
product.

The current version of the Java 2-Enterprise Edition (J2EE) supported by the IF is the J2EE 1.0.
More detailed information on the J2EE can be obtained through the Sun Microsystems web site
at http://java.sun.com. For specific, J2EE and services implementation details refer to the
associated Application Server vendor web sites identified in Section 4.2.1.5 Application Server
and subsections.

4.2.1.3 COM+
Note Future Capability: COM+ (Component Object Model +) is in essence Microsoft’s
Distributed Component Architecture. COM+ is an extens ion of DCOM with
“lightweight” object models for utilization by a Java virtual machine. Additionally,
COM+ will include standard services such as security and transactions. COM+ is
scheduled for release with Windows 2000. As previously identified, the use of COM+
may well be restricted to use within a client workstation.

4.2.1.4 Distributed Computing Environment (DCE)
The use of DCE in the GCSS-AF enterprise is limited to that required by IF supported IBM
WebSphere Application Server and IBM Policy Director security products. It is not for use by
GCSS-AF applications. The required DCE is bundled with both the IBM WebSphere
Application Server and IBM Policy Director security products.

In network computing, DCE, developed by the Open Software, is an industry-standard software
technology for setting up and managing computing and data exchange in a system of distributed
computers. DCE is part of a larger network of computing systems that include different size
servers scattered geographically. DCE uses the client/server model. Much of DCE setup
requires the preparation of distributed directories so that DCE applications and related data can
be located while they are in use.

4.2.1.5 Application Server
An Application Server is, by definition, “a computer server that serves applications.” More
precisely, an application server serves up application services. The main purpose of an
Application Server is to reduce the workload of applications by taking over the responsibility of
mundane activities involved in executing the application and making the application’s services
available to external modules in a reliable manner.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

26

An Application Server is a computer program that resides on a server in a distributed network
and whose main function is to provide the business logic for an application program. An
Application Server provides a customizable and flexible execution environment for hosting
business logic components, thus providing distributed services and integrity for application
execution.

An Application Server provides an environment for developing scalable, multi-tier applications.
Application servers integrate databases, object persistence, Java, Enterprise JavaBeans, C++, and
standard CORBA services such as Transactions, Security, Events, Concurrency and Locking.
Many also provide support for Load Balancing and Fault Recovery.

For GCSS-AF, application server products will be qualified at the request of and under the
direction of the GCSS-AF Enterprise Authority. The subsection that follows provides a brief
description of the current qualified application server products.

4.2.1.5.1 IBM WebSphere Application Server
IBM WebSphere Application Server is an e-business application deployment environment built
on open standards-based technology. It is the cornerstone of WebSphere application offerings
and services. The Standard Edition lets the developer use Java Servlets, Java Server Pages, and
XML to quickly transform static web sites into vital sources of dynamic web content. The
Advanced Edition is a high-performance EJB server for implementing EJB components that
incorporate business logic; it includes the Standard Edition. The Enterprise Edition integrates
EJB and CORBA components to build high-transaction, high-volume e-business applications
logic; it includes the Standard Edition and Advanced Edition. In order to address the GCSS-AF
Enterprise requirements, the Enterprise Edition is required for the GCSS-AF Enterprise.

WebSphere features at a glance include:

Standard Edition
The features of Standard Edition for Web developers and content authors includes:

Enhanced Java, leveraging Java 2 Software Development Kit V1.2.2 across all supported
operating systems
Support for JavaServer™ Pages, including:

• Support for specifications .91 and 1.0
• Extended tagging support for queries and connection management
• An XML-compliant DTD for JSPs

Support for the Java™ Servlet 2.1 specification including a graphical interface, automatic
user session management and user state management
High speed pooled database access using JDBC for DB2® Universal Database™ and Oracle
XML server tools, including a parser and data transformation tools
XSL support
V3.5 supports Windows NT, Windows 2000, Solaris, AIX, AS/400, and HP-UX.
IBM HTTP server, based on Apache Web Server, including:

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

27

• An administration GUI
• Support for LDAP and SNMP connectivity

Integration with IBM VisualAge® for Java to help reduce development time by allowing
developers to remotely test and debug Web-based applications
Tivoli Ready Modules

Advanced Edition
The features of Advanced Edition for Web application programmers, provides all the features of
the Standard Edition, plus:

Integration with Lotus Domino, IBM Visual Age for Java and IBM WebSphere Commerce
Suite
Full support for the Enterprise JavaBeans™ (EJB) 1.0 specification, including both
SessionBeans and EntityBeans (Container-Managed and Bean-Managed Persistence)
Deployment support for EJBs, Java Servlets and JSPs with performance and scale
improvements, including:

• Application-level Partitioning
• Load Balancing

V3.5 supports Windows NT, Windows 2000, Solaris, AIX, AS/400 and HP-UX.
IBM LDAP Directory, which can be optionally installed
A DB2 server is automatically installed as part of the runtime environment
Support for Distributed Transactions and Transaction Processing
Management and security controls, including:

• User and group level setup
• Method level policy and control

Enterprise Edition
The features of Enterprise Edition for enterprise e-business application developers and architects,
includes all the features of the Advanced Edition, plus:

Full distributed object and business process integration capabilities
IBMs transactional application environment integration (from TXSeries™)
Complete Object Distribution and Persistence (from Component Broker)
Support for MQSeries®
Complete Component Backup and Restore support
XML-based team development functions
Integrated Encina application development kit
V3.5 supports Windows NT, Solaris, and AIX.

For more detail on the IBM WebSphere product suite, refer to IBMs on- line documentation
available through the http://www.ibm.com web site. In addition, to obtain IBM Redbooks on
the subject, access the web site at http://www.redbooks.ibm.com.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

28

4.2.2 Messaging
Enterprise Messaging is an essential tool for building Enterprise Applications. Messaging
provides application-programming services that applications can use to communicate with each
other using messages and queues. It provides guaranteed, once-only delivery of messages.
Using asynchronous Messaging allows separation of application programs, such that the program
sending a message can continue processing without having to wait for a reply from the receiver.
In addition to the point-to-point send/receive capability, messaging also supports the
publish/subscribe Messaging paradigm. Messaging is recommended as the communications
mechanism between applications, especially those located at different processing centers.
Developers shall consider the asynchronous nature of Messaging when designing an application,
particularly as it relates to transactions.

The Integration Framework provides multiple mechanisms to send and receive messages. The
mechanism the IF uses is dependent upon the nature of the application’s implementation:

Application server based applications should employ Container-Managed Messaging.
Stand-alone applications written in either Java or C++ should use the Open Application
Middleware API Specification (OAMAS).
The use of JMS is pending for a future Integration Framework release.

Note that while the native MQSeries API is exposed to applications, the use of this API is highly
discouraged as the higher- level abstracted interfaces identified above serve to simplify the use of
messaging as well as providing (to the application) a high degree of independence from the
underlying Messaging implementation. Exceptions to this for Legacy systems interfaces will fall
under evaluation on a case-by-case basis.

Firewall issues have been addressed for the Integrated Framework supported Message Oriented
Middleware (MOM) COTS product.

4.2.2.1 Message Oriented Middleware
MOM is the accepted term used to categorize existing Middleware products that implement the
Messaging described in the above section. These products may have more than their native APIs
built on top of the product (e.g. Java Messaging Service - JMS).

MQSeries (IBM)
The MOM product supported by the IF. In addition to the guaranteed delivery of messages,
MQSeries supports Transactional Messaging, which means that operations on messages can be
grouped into ‘units of work’. A unit of work is either committed in its entirety, or backed-out, so
that it is as if none of the operations took place. MQSeries can also coordinate units of
Messaging work with other Transactional work, like database updates, so that message data and
database data remain completely in-sync at all times. MQSeries provide a native API (MQI), a
Java Messaging Service API, and an Application Messaging Interface (AMI).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

29

For more detail on the IBM MQSeries product, refer to IBMs on- line documentation available
through the http://www.ibm.com web site. In addition, to obtain IBM Redbooks on the subject,
access the web site at http://www.redbooks.ibm.com.

4.2.2.2 Container-Managed Messaging
Container-based messaging is analogous to that of container managed persistence in that the
container provides the underlying services to business object developers to:

Treat messages like business data and not specifically a message to provide (nearly) the same
view of messages to a business object as any other data object.

Move messages on and off queues.

Manage the movement of messages between business logic and queues within the transaction
configured for the container.

As an application server provides and manages containers, the capabilities the container provides
are currently specific to the container as supplied by the application server vendor. A standard
such as that specified by the J2EE is not yet available for container-managed messaging.
However, proposals for Container-Based Messaging are now being made for the J2EE.

For more detail on the MQSeries Adapter provided by the IBM WebSphere product, refer to
IBMs on- line documentation available through the http://www.ibm.com web site. In addition,
to obtain IBM Redbooks on the subject, access the web site at http://www.redbooks.ibm.com.
Note that to minimize the repeatable code needed to employ the publish/subscribe capability
from within WebSphere (application) components, the Integration Framework provides
additional classes to perform the necessary operations. These descriptions appear in the section
4.2.1.5.1 IBM WebSphere Application Server

4.2.2.3 Open Application Middleware API Specification (OAMAS)
The OAMAS is a high level API that greatly simplifies programming for application messaging
and publish/subscribe. The Open Application Group Inc. (OAGI) has now adopted the IBM
specified and developed Application Middleware Interface (AMI) API for the OAMAS. The IF
supported OAMAS (AMI from IBM) provides bindings for standard programming languages
including Java, C, and C++. By providing a high level of abstraction and moving Message-
handling logic from the application into the Middleware, using the OAMAS reduces the amount
of written code for new applications. Connectivity code specifies a service and a policy that the
IF will use when sending or receiving messages. OAMAS is currently the recommended API for
use by applications and components. Note that the current OAMAS 1.0 release includes only the
AMI procedural interface; the next release of OAMAS will add the AMI supported object
interfaces. Currently, the full AMI is available to the developer with the assumption that it will
be included in the next OAMAS release.

The OAMAS specification is available from the Open Application Group’s web site at
http://www.openapplications.org.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

30

4.2.2.4 Java Messaging Service (JMS)
The JMS API improves programmer productivity by defining a common set of messaging
concepts and programming strategies that will be supported by all JMS technology-compliant
messaging systems. JMS is one of the standards APIs defined for Enterprise Java. The JMS
provided with the IF is included with the IBM WebSphere product.

Note Future Capability: As the EJB specification evolves to include adequate support
for events (including asynchronous messages), the benefits of using JMS should increase
significantly. While the AMI API is currently identified as the preferred GCSS-AF
messaging interface, investigation is on going as to the use of Java Messaging Service by
Java applications; this capability may be made available in a future release of the IF.

The JMS specification, as well as additional information, is available through the Sun
Microsystems web site at http://java.sun.com. For specific JMS implementation details refer to
the associated Application Server vendor web sites ident ified in Section 4.2.1.5 Application
Server and subsections.

4.2.2.5 CORBA 3.0
Note Future Capability: CORBA 3.0 Asynchronous Messaging and Qua lity of
Service Control - This new CORBA 3.0 Specification along with availability of products
which implement the specification is being monitored. It is not supported by the IF but
will be considered as products become available. The CORBA 3.0 Messaging
Specification defines a number of asynchronous and time-independent invocation modes
for CORBA. The specification allows both static and dynamic invocations to use every
mode. Asynchronous invocations results may be retrieved by either polling or callback,
with the choice made by the form used by the client in the original invocation. Policies
allow control of Quality of Service of invocations. Clients and objects may control
ordering (by time, priority, or deadline); set priority, deadlines, and time-to- live; set a
start time and end time for time-sensitive invocations, and control routing policy and
network routing hop count.

More detail information on the OMG CORBA 3.0 specification and it is asynchronous
messaging can be obtained through the OMG web site at http://www.omg.org.

4.2.3 Distributed Data Access
The Integration Services layer provides the capability for components to access databases that
are distributed across the enterprise. These are all based on industry standards and are widely
supported.

4.2.3.1 Open Database Connectivity (ODBC)
Open Database Connectivity is a Microsoft established standard that enables software developers
to create applications that can work with a number of SQL-based data sources. ODBC is a C-
level application-programming interface (API) for SQL data stores and provides a common
interface for accessing heterogeneous SQL databases. ODBC is based on SQL as a standard for

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

31

accessing data. ODBCs consistent interface provides maximum interoperability: A single
application can access different database management systems (DBMSs) through a common set
of code. ODBC is meant for use by C++ components only; Java components should use JDBC.
This enables a developer to build and distribute a client/server application without targeting a
specific DBMS or having to know specific details of various back-end data stores. When an
application needs to get data from a data store, the application sends a SQL statement to the
ODBC Driver Manager, which then loads the ODBC drivers, required to talk to the data. The
driver then translates the SQL sent by the application into the SQL used by the DBMS and sends
it to the back-end database. The DBMS retrieves the data and passes it back to the application
through the driver and the Driver Manager.

Developers can code directly to the ODBC API by declaring various functions and then using
them to connect, send SQL statements, retrieve results, get errors, disconnect, and so on.
However, it is difficult and involves a lot of code. Because of this, the developers use ADO,
RDO, and DAO more often to access ODBC data from applications.

ODBC has been the data access standard since 1992 and has played a very important role in
enabling client/server applications. There are more than 170 ODBC drivers available. With
well-written drivers, ODBC performance is excellent. In the short and medium term, ODBC is
the best way for C++ programs to access a broad range of relational data due to the high number
of available drivers.

The ODBC specification as well as additional information is available from the Microsoft web
site at http://www.microsoft.com.

4.2.3.2 Java Database Connectivity (JDBC)
The JDBCTM API provides universal data access from the JavaTM programming language. Using
the JDBC 2.0 API, a user can access virtually any data source, from relational databases to
spreadsheets and flat files. JDBC technology also provides a common base to build tools and
alternate interfaces. JDBC drivers supported by the IF are the IBM WebSphere provided JDBC
driver for DB2 and the Oracle JDBC driver for the Oracle RDBMS.

Note Future Capability: If, in the future, the Sybase RDBMS is required, a JDBC driver
for it will be supported.

The JDBCTM specification as well as additional information is available through the Sun
Microsystems web site at http://java.sun.com. For specific JDBCTM implementation details
refer to the associated Application Server vendor web sites identified in Section 4.2.1.5,
Application Server and subsections and/or the database vendor web sites identified in
Application Server

4.2.3.3 Net8 / SQLNet
Note Future Capability: Net8 (formerly known as SQLNet) is the foundation of
Oracle’s family of networking features, providing an Enterprise-wide data access solution
for heterogeneous, Distributed Computing Environments. It enables client-server and

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

32

server-server communications across any network, allowing Oracle databases and their
applications to reside on different computers and communicate as peer applications.
Net8 eases the complexities of network configuration and management, maximizes
performance, and improves network diagnostic capabilities; while at the same time
introducing distributed access for Java-based applications. Note that in the current
release, while Net8 is available as part of the Oracle installation, it is not supported as no
actual testing of Net8 has been undertaken. Support of Net8 could be provided if a valid
need is identified to the TSG. However as Net8 is a proprietary access mechanism, its
use is discouraged and use of the open standards based Integrated Framework supported
data access products should be employed.

The Net8/SQLNet specification as well as additional information is available from the Oracle
web site at http://www.oracle.com.

4.2.4 Distributed Communications Protocols
This category of IF services provide the underlying communication protocols upon which
implements the higher level services and Middleware. They are typically provided either by the
Operating System supplier or with a particular Middleware product such as IIOP with the ORB
product or RMI with the Enterprise Java provider.

TCP/IP
The Operating System vendor provides.

UDP
The Operating System vendor provides

FTP
The Operating System vendor provides

HTTP
Hypertext Transfer Protocol (HTTP) is the set of rules for exchanging files (text, graphic
images, sound, video, and other multimedia files) on the World Wide Web. Relative to the
TCP/IP suite of protocols (which are the basis for information exchange on the Internet), HTTP
is an application protocol. HTTP is provided by the products that utilize it (e.g. Web Browser,
Web Server, Web proxy, XML parser, etc.).

IIOP
The CORBA specified protocol over TCP/IP is as provided as part the CORBA product.
Products that utilize IIOP provide it (e.g. CORBA, Java using RMI over IIOP etc.). For the
current release, this is the WebSphere (Enterprise Edition - Component Broker) product.

RMI
Remote Method Invocation (RMI) is the Java version of what is generally known as a Remote
Procedure Call (RPC), but with the ability to pass one or more objects along with the request.
The IF specifies that RMI over IIOP is required. RMI is as supplied by the EJB vendor. For the

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

33

current release, RMI is included in the WebSphere (Enterprise Edition - Component Broker)
product.

RPC
Remote Procedure Call (RPC) is a protocol that one program can use to request a service from
a program located in another computer in a network without having to understand network
details. The RPC provided is the Open Software Foundations’ Distributed Computing
Environment (DCE) implementation. As with the DCE described above, the use of RPCs on
GCSS-AF is limited to that required by IF supported Security COTS product (IBM Policy
Director); it is not for use by GCSS-AF applications. The required RPC/DCE is bundled with
the IBM Policy Director security COTS product.

4.2.5 Network Time Protocol
Network Time Protocol (NTP), now an Internet standard, is a protocol that synchronizes
computer clock times in a network of computers. In common with similar protocols, NTP uses
Coordinated Universal Time to synchronize computer clock times to a millisecond, and
sometimes to a fraction of a millisecond.

Accurate time across a network is important for many reasons; even small fractions of a second
can cause problems. For example, distributed procedures depend on coordinated times to ensure
that the computer follows proper sequences. Security mechanisms depend on coordinated times
across the network. File system updates carried out by a number of computers also depend on
synchronized clock times.

For GCSS-AF, the Integration Framework has specified that it will obtain UTC time through the
Global Positioning System (GPS). DISA, at the RSAs, are to provide computers designated as
Primary Time Servers outfitted with GPS receivers and using as NTP to synchronize the clock
times of GCSS-AF computers. The term NTP applies to both the protocol and the client/server
programs that run on computers to be time synchronized. GCSS-AF computers will be equipped
with an NTP client to initiate a time request exchange with the timeserver. DISA is responsible
for equipping fielded GCSS-AF with the client NTP as well as integrating it with the NTP
timeserver.

The NTP specification as well as additional information can be obtained through the University
of Delaware web site at http://www.eecis.udel.edu/~ntp.

4.3 Technical Services Layer
The Technical Services Layer defines the services and facilities (
Figure 6: Technical Services Packages of the Integration Framework) of the Integration
Framework. They provide the distribution, presentation; security, data, and enterprise system
management capabilities in support of component based systems. Examples of these are
Naming, Event, Persistence, Transaction, Licensing, & Trader services as well as User Interface,
System Management, and Internationalization facilities, and a Metadata Repository).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

34

Figure 6: Technical Services Packages of the Integration Framework

4.3.1 Services
Many Distributed Object programs use these domain- independent interfaces. These
components standardize the life-cycle management of objects. The IF provides interfaces to
objects, to control access to objects, to keep track of relocated objects, and to control the
relationship between styles of objects (class management). These services are illustrated in

Figure 7: Service Packages of the IF Technical Services

Also provided are the generic environments in which single objects can perform their tasks.
Object Services provide for application consistency and help to increase programmer
productivity.

While from an OMA perspective, these are intended to be CORBA services, from the IF (and
GCSS-AF) perspective these encompass not only CORBA services but also those services
required and/or employed by non-CORBA elements of the IF. Examples are those services

Technical
Services

Services Facilities

S e r v i c e s

N a m i n g S e r v i c e s

E v e n t S e r v i c e s

P e r s i s t e n c e
S e r v i c e s

L i f e C y c l e
S e r v i c e s

C o n c u r r e n c y
S e r v i c e s

E x t e r n a l i z a t i o n
S e r v i c e s

R e l a t i o n s h i p
S e r v i c e s

T r a n s a c t i o n
S e r v i c e s

Q u e r y S e r v i c e s

L i c e n s i n g
S e r v i c e s

P r o p e r t y
S e r v i c e s

T i m e S e r v i c e s

T r a d e r S e r v i c e s

C o l l e c t i o n
S e r v i c e s

S e c u r i t y
S e r v i c e s

A u t h e n t i c a t i o n

A c c e s s C o n t r o l

N o n -
R e p u d i a t i o n

C o n f i d e n t i a l i t y

I n t e g r i t y

A u d i t a n d
A l a r m s

P K I a n d K e y
M a n a g e m e n t

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

35

required for securing MOM data exchange and Web access, Enterprise Java services such as
Naming and Directory services, Transaction services, Messaging services, Data Access and
Persistence services, and Resource-Sharing services.

4.3.1.1 Event (and Notification) Service
The Event service and Notification service (currently in OMG selection) allows components to
establish events and for components to register or unregister their events in specific events.
Event services allow the distribution of events among components that know nothing of each
other. The IF Event service and Notification service are those specified by CORBA. The
Notification service extends the Event service including the addition of Quality of service.

Note Future Capability: These services are available to CORBA components but are
not for use by EJB components. The EJB specification is very weak in the area of event
handling and services and is likely to expand in a future update. The IF, in a future
release, will most likely provide services and/or templates to support event invocation of
EJBs.

The Event service and Notification service provided with the current IF release is that provided
with the IBM WebSphere (Enterprise Edition - Component Broker) product. The provided
Notification service bases itself on the Notification services proposal submitted by the team that
includes IBM. While these services are available, the ir use is discouraged, as the services may
become unsupportable .

4.3.1.2 Naming Service
The Naming service is a generic directory service that allows components to locate other
components by name. CosNaming, through Java Naming and Directory Interface (JNDI) for
Enterprise JavaBeans, provide services to CORBA components. The IF Naming Service
supported by the IF maintains both CORBA and EJB names within the same naming service
(directory), thus eliminating the need to search different directories depending upon the type of
component being “looked-up” or having to federate and manage two separate directories. This
simplifies the integration of EJB and CORBA components. The Naming service provided with
the current IF release is that provided with the IBM WebSphere (Enterprise Edition - Component
Broker) product.

4.3.1.3 Trader Service
Note Future Capability: The Trader Service provides a “Yellow Pages” for objects (and
components). Service providers can register “advertisements” of service availability in
the Trader Service. The Trader provides a registry of all publicly known services and
may be queried to allow clients to identify candidate implementations. Each
advertisement identifies various service characteristics and qualities of service. Given the
general single source of service “type” within the GCSS-AF Enterprise, it is not clear at
this time the need for a Trader service within the GCSS-AF IF. Requirement for a Trader
service should be submitted to the TSG with supporting rationale.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

36

4.3.1.4 Life Cycle Service
The Life Cycle service as specified by OMG provides operations for creating, copying, moving,
and deleting objects in a distributed environment; an environment in which location transparency
is necessary if extensibility, portability, load balancing, and fault tolerance are to be provided.
The Life Cycle service supports this by providing a level of abstraction between the client
creating the object and the determination of the location where the object will exist. The Life
Cycle service supported by the current IF is based on the OMG CORBA services Life Cycle
service specification; it is not a complete implementation and includes extensions. However, the
IF supported CORBA implementation (as provided by IBM WebSphere Enterprise Edition)
includes necessary life cycle capabilities through the containers in which manage the CORBA
components. EJB containers provide life cycle capabilities for EJB components.

The Life Cycle Service and life cycle capabilities included in the current IF release is those
provided with the IBM WebSphere (Enterprise Edition - Component Broker) product.

Note Future Capability: No plans exist to expand the Life Cycle service to include all
services as specified by OMG; requirement for this expansion should be submitted to the
TSG with supporting rationale.

4.3.1.5 Licensing Service
The Licensing service provides a mechanism to control use of a product (or intellectual property)
in a manner determined by the specific business and customer needs. It provides operations for
metering the use of components to ensure fair compensation for their use. It supports charging
per session, per node, per instance creation, and per site.

Note Future Capability: The current IF does not support the Licensing service. There
does not appear to be any need for a Licensing service at this time within the GCSS-AF
IF. As such, any requirement for a Licensing service should be submitted to the TSG
with supporting rationale.

4.3.1.6 Time Service
The Time service provides the ability to obtain the current time, determine the order in which
“event” occurred, generate time-based events based on timers and alarms, and to determine the
interval between events. The current IF does not support this OMG defined service. However,
within a server the underlying Operating System’s time related services are available with the
supported POSIX APIs.

4.3.1.7 Externalization Service
The Externalization service provides a standard way for getting data into and out of a component
using a stream-like mechanism. The Externalization services supported by the current IF is a

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

37

relatively small subset of the OMG defined Externalization service. The current IF only
provides the StreamIO and Streamable interfaces defined in the CosStream module for internal
use only by application server product supported by the IF. As the CosExternalization module
is not provided, the current IF does not make any Externalization services for client use. The
Externalization service provided with the current IF release is that provided with the IBM
WebSphere (Enterprise Edition - Component Broker) product.

Note Future Capability: No plans exist to expand the Externalization service to include
all services as specified by OMG; requirement for this expansion should be submitted to
the TSG with supporting rationale.

4.3.1.8 Property Service
The Property service requires applications objects to inherit the interfaces in the (OMG) standard
and provide additional functionality supported through those interfaces. The purpose of
properties is similar to that of attributes; however, properties are a dynamic capability that allows
the addition of properties-on-the-fly. Properties are useful for applications such as desktop
managers, debugging tools, browsers, and other kinds of system-management tools. The
Property service is not available in the current IF release. No plans exist to provide the Property
service; requirement for this expansion should be submitted to the TSG with supporting
rationale.

4.3.1.9 Persistence Service
Persistence services are a set of interfaces used by a persistent object to store its persistent state.
The original OMG Persistent Object Store (POS) Service was deemed by industry and OMG to
be inadequate and is being replaced by a Persistence State Service (PSS).

Note Future Capability: PSS, which is still in the ratification process, was not available
for inclusion in the current IF. As such, the PSS as specified by OMG, is not available in
the current IF but the persistence service provided in the current IF release is very similar
to the specification in ratification.

The current IF does provide persistence for both CORBA and EJB objects-components through
containers that encapsulate them. For EJBs, container managed persistence is provided using the
same managed framework mechanism provided for non-EJB objects. This persistence
mechanism is integrated with the Transaction service to allow persistent objects to participate
implicitly within a transaction.

Objects can utilize the IF supported persistence only through use of the managed framework.
The Persistence service provided with the current IF release is that provided with the IBM
WebSphere (Enterprise Edition - Component Broker) product.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

38

Note Future Capability: The progress of the OMG PSS will be monitored and a
decision made in the future as to the requirement to update the persistence service
provided in the IF.

4.3.1.10 Transaction Service
Transaction service allows an application to group updates required for a single “task” into a
transaction. The Transaction service ensures that either all these updates occur or none occur. If
the application has correctly grouped then updates within the transaction, then the data is always
updated consistently. If the application uses the Transaction service in conjunction with the
Concurrency service, these updates are also not affected by updates being performed for other
tasks. If persistent objects or a database is used to store the data, these updates will be permanent
even if the system crashes. The IF supported Transaction service provides for both two-phase
and one-phase commit processes. The CORBA Object Transaction Service (OTS) specification
requires both flat and nested transactions.

Note Future Capability: The current IF does not support nested transactions.

In addition to the OTS, the IF also supports the Java Transaction Service (JTS) as well as EJB
container managed persistence. The IF supported Transaction Service allows both EJB and
CORBA components to participate in the same transaction. The Transaction Service provided
with the current IF release is that provided with the IBM WebSphere (Enterprise Edition -
Component Broker) product.

4.3.1.11 Query Service
The Query service, as specified by OMG, provides query operations on collection of objects.
The queries are predicate-based and may return collection of objects. Queries can be specified
using the SQL3 specification and the Object Database Management Group’s (ODMGs) Object
Query Language (OQL). The term “query” is used here to denote general manipulation
operations including selection, insertion, updating, and deletion on collection of objects.

 Note Future Capability: Insertion, updating, and deletion are not yet available on the IF.

The Query service exists to allow arbitrary users and components invoke queries on arbitrary
collection of objects. The current IF Query service supports a query language Object Oriented
SQL (OOSQL); OOSQL is a subset of the SQL99 and SQL4 standards that are defined by the
ANSI/ISO SQL committees. The current IF Query service provides only query capability; thus
the insertion, updating, and deletion operations are not supported. The Transaction service
provided with the current IF release is that provided with the IBM WebSphere (Enterprise
Edition - Component Broker) product.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

39

4.3.1.12 Concurrency Service
The Concurrency service is a set of interfaces that allow an application to coordinate access to a
shared resource from multiple transactions or threads. Coordinating access to a resource requires
reconciliation of any conflicting actions resulting from simultaneous, multiple transaction or
thread access of a single resource. This conflict resolution shall result in the resource remaining
in a consistent state. To support this, the Concurrency service supports locking using lock set.
While this capability is provided, the IF supported CORBA and EJB framework provides all the
necessary resource level locking and caching to coordinate resource access by multiple
transactions or threads. The Concurrency service would explicitly be used by developers to
provide concurrent access to datastores not supported by the IF CORBA and EJB framework.
The Concurrency service provided with the current IF release is that provided with the IBM
WebSphere (Enterprise Edition - Component Broker) product.

4.3.1.13 Relationship Service
The Relationship service provides a way to create dynamic associations (or links) between
components that have no prior knowledge of each other. It also provides mechanisms for
traversing the links that group these components. This service may be used to enforce referential
integrity constraints, track containment relationships, and for any type of linkage among
components. Included in the OMG Relationship service is the CosObjectIdentity module that
provides the means to uniquely identify an object from other objects within a distributed system.
This is the only service specified in the OMG Relationship service specification supported in the
current IF release. The Relationship service provided with the current IF release is that provided
with the IBM WebSphere (Enterprise Edition - Component Broker) product.

4.3.1.14 Collection Service
Note Future Capability: The Collection service, as defined by OMG, provides a
uniform way to create and manipulate the most common collections generically.
Example collections are sets, queues, stacks, lists, and bags. The Collection service
defines three categories of interfaces to serve this purpose: collection interfaces and
collection factories, iterator interfaces, and function interfaces. No plans exist to provide
the Collection service as specified by OMG; requirement for this service should be
submitted to the TSG with supporting rationale.

4.3.1.15 Security Services
The IF Security services, in conjunction with the DII COE, processing center boundary
protection, DISN, and USAF/DISA operations and support provides end to end security. This
encompasses user and application authentication and access control, non-repudiation of user
actions, confidentiality of communicated and managed information, integrity of information and
systems, and auditing and monitoring of activities of security interest. The IF Security capability
provides the USAF Enterprise the ability to provide a cohesive, comprehensive, and integrated
security implementation provided the Security services are employed as specified. Note that the
IF Security solution includes configuration guides for computational equipment and software
that, in conjunction with the IF Security services, are integral to meeting security requirements.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

40

Authentication
This package provides services needed for Identification and Authentication activities. This
includes user authentication, component authentication, handshaking involved with establishing
communications between software or hardware components, and user session maintenance. The
user authentication currently provided by the IF is a standard userID/password mechanism that
includes an enterprise logon webpage.

Note Future Capability: As DoD PKI plans and implementation mature, a migration of
user authentication to certificate/smart card authentication mechanism is anticipated to be
supported by the IF.

Component/server authentication services are provided requiring server-side PKI certificates.
Enterprise session management is provided such that a user need only log in once. The IF
requires the use of IBM Policy Director and MessageSeal product to provide these services.

Access Control
This category encompasses services for controlling access to GCSS-AF objects such as
components, databases, individual data objects, etc. It does not include objects controlled at the
operating system level. GCSS-AF relies upon properly configured Operating System controls at
that level. (However, Access Control allows files to be defined as controlled objects in addition
to protecting them using OS controls.) Access Control provides services to establish Access
control policies and data for the enterprise, to implement those policies during run-time actions
of the system, and to administer the user and object data relating to access control policies and
decisions. For the current release, implicit access control is provided for GCSS-AF objects on
the web servers and Servlet engines, and MQSeries queues and objects.

Note Future Capability: Implicit authorization services for CORBA objects or EJBs are
anticipated to be provided in a future release.

The developer with the current release can implement explicit authorization if required prior to
availability of the implicit services. IF authorization services are capable of providing protection
at several levels of granularity including application invoked access control down to the attribute
level. Application engineers shall determine the appropriate level for their application objects,
and to set up the required configuration and policy data accordingly. The IF requires the use of
IBM Policy Director and MessageSeal products to provide these services.

Non-Repudiation
This category encompasses services that ensure a user cannot deny an action taken by him/her or
on his/her behalf, within the system. This includes providing capabilities for creating, verifying,
and properly storing digital signatures. The current IF release provides a capability for
application components to implicitly sign and verify Business Object Documents (BODs) or
other data and messages.

Note Future Capability: User- level digital signatures are anticipated to be available in a
future release of the IF. Full non-repudiation archiving is not provided, and is not

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

41

currently planned due to lack of COTS capabilities and the immaturity of relevant
standards in this area, but may be provided later.

The IF requires the use of IBM Policy Director product to provide these services.

Confidentiality
This category encompasses services that ensure unauthorized individuals cannot view, modify,
or delete data without appropriate authorization, and that proper protection is applied to data and
code during both storage and transmission. This package provides encryption and
communications security for implicitly securing all GCSS-AF-originated messages beginning
with the enterprise logon. These provisions include the use of HTTPS, SSL, Secure RPCs, and
LDAPS, as provided through Netscape browsers, components of IBM Policy Director, IBM
HTTP Server, IBM WebSphere, and Oracle ASO.

Note Future Capability: Multi-Level Security (MLS) is not supported but is expected to
be a future requirement.

Applications that require MLS in the meantime will have to supplement the IF to satisfy these
requirements.

Integrity
Integrity services are those that ensure system elements and data cannot be compromised or
modified by illicit actions. The majority of the services and measures, such as boundary
protection, required for Integrity is provided by the processing centers and base networks.
System oversight and administration services and measures are provided by ESM package and
by USAF operations and support. The IF Integrity capability provides only that information
needed to tie into these external elements and with the IF supported security product base, the
IBM Policy Director. In addition, the IF requires the proper application of DISA STIGs to the
host servers and software that is delineated in the IF provided NT and Unix configuration.

Audit and Alarms
This category encompasses services that record information about activities taken inside the
system, whether by human users or software components, and the storage and analysis of those
records. This includes creation of audit records, storage of audit records, creation of audit
reports, generation of dynamic on- line alarms, and analysis of events and records (whether at
runtime or post-mortem). It also provides services to define and administer audit policies, as
well as the technical features needed to implement the policies. It also includes intrusion
detection, although most of the technical solution for intrusion detection is specified as part of
the DII COE and CITS/BIP. The current IF audit provisions are limited to the facilities provided
by the supported security product, IBM Policy Director and IF Log Services to record system
actions.

Note Future Capability: The current IF does not provide audit reduction or alarm
posting. Alarm and alert posting is to be provided at the RSA processing centers using
the Tivoli Management System capabilities employed by DISA at an RSA. Processing
centers that do not utilize this Tivoli capability should plan to implement the same

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

42

capability as DISA at an RSA. A future IF release should subsume Tivoli under the
Enterprise Systems Management capability. Audit reduction and reporting capabilities
are anticipated to be provided in a future IF release.

PKI and Key Management
This package provides services relating to the use of keys, especially those relating to PKI
certificates and keys. As USAF is responsible for the issuance and management of certificates,
this package only addresses those services dealing with certificate and key retrieval, utilization,
and protection within GCSS-AF. The current IF release includes only server-side certificates,
using the key protection provided by supported security product (IBM Policy Director).

Note Future Capability: As DoD PKI plans and implementation mature, user
authentication certificates and key support is anticipated to be included in the IF.

4.3.2 Facilities
Like Object Service interfaces, these interfaces are also horizontally oriented, but unlike Object
Services these interfaces are oriented towards end-user applications. Common facilities provide
a set of generic application functions that can be configured to the specific requirements of a
particular configuration. Examples of these facilities include printing, document management,
database, and electronic mail facilities. Standardization leads to uniformity in generic operations
and to better options for end users for configuring their working environments. These also
include facilities for use over the Internet.

The high- level packages included under facilities are illustrated in Figure 8: High-Level
Packages Under Facilities of the Integration Framework.

Figure 8: High-Level Packages Under Facilities of the Integration Framework

4.3.2.1 User Interface Common Facilities

The packages included under User Interface Common Facilities are illustrated in Figure 9:
Packages of the User Interface Common Facilities.

Facilities

Task Mgmt.
Common Facilities

Info. Mgmt.
Common Facilities

International-
ization

Enterprise
Systems Mgmt.

User Interface
Common Facilities

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

43

Figure 9: Packages of the User Interface Common Facilities

At the time of this writing, it was anticipated tha t the Air Force Portal products and services
would be allocated to the Reusable Business Component Layer – Web GUI Support layer, see
Section 4.4.2 Web GUI Support for more information.

Note that those services and attributes of a generic web browser and generic web server
identified in the UML model are solely for the purposes of understanding how the web browser
and web server interact with other components of the architecture.

4.3.2.1.1 Web Services
The use of Web-based technology for user interface and presentation is identified as the
preferred method in the GCSS-AF System Specification. To this end, COTS Web Browsers
provide the client-side capability while the server-side capability is provided by COTS Web
Enterprise Servers. It is assumed that any reader of this document would have a general
understanding of Web Browsers and Web Servers.

4.3.2.1.1.1 Web Browsers
For the current IF release, a Web Browser (as utilized for the display of information for and
interaction with GCSS-AF applications) is utilized to support HyperText Markup Language
(HTML) pages only (exclusive of Applets).

An Applet is a program written in the Java programming language that can be included in an
HTML page, much in the same way an image is included. When the developer uses a Java
technology-enabled browser to view a page that contains an Applet, the Applet's code is
transferred to their system and executed by the browser's Java Virtual Machine. Applets require
signing if they are employed as part of a GCSS-AF application. Validation of support for signed
Applets to meet DoD requirements will be included in a future IF release.

User Interface
Common Facilities

Web Services

Web BrowserWeb Server

Netscape
Enterprise Server

IBM
HTTP Server

Servlet Engine

Netscape
Navigator

Microsoft
Internet Explorer

Portal

AFP 3.0

AFP 2.0

User Interface
Common Facilities

Web Services

Web BrowserWeb Server

Netscape
Enterprise Server

IBM
HTTP Server

Servlet Engine

Netscape
Navigator

Microsoft
Internet Explorer

Portal

AFP 3.0

AFP 2.0

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

44

Note that these browsers do in fact support Applets both unsigned and signed. As such they do
not preclude interaction with Web Sites and URLs that utilize Applets.

Currently validated Web Browsers are the:

Netscape Communicator (or Navigator)
For detailed information on the Netscape Communicator product, refer to Netscape on- line
documentation available through the Netscape Products web site at http://www.netscape.com.

Microsoft Internet Explorer
For detailed information on the Microsoft Internet Explorer product, refer to the Microsoft on-
line documentation available through the Microsoft web site at http://www.microsoft.com.

Note that these browsers are validated relative to “pure” HTML pages. Further validation is
required when signed Applets are supported as part of the IF.

4.3.2.1.1.2 Web Servers
A Web server is the computer program that serves requested HTML pages or files, generally as
requested from a Web browser. Web Servers, for GCSS-AF, shall also support the ability to
extend the Web Server functionality with (Java) Servlets. Java Servlets are the Java platform
technology of choice for extending and enhancing Web servers.

Currently validated Web Servers are the:

IBM Internet HTTP Server (IHS)
Included with the IBM WebSphere Application Server product line. For more detail on IBM
Internet HTTP Server, refer to IBMs on-line documentation available through the IBM web site
found at http://www.ibm.com. In addition, IBM Redbooks on the subject can be obtained from
the IBM Redbooks web site at http://www.redbooks.ibm.com.

Future supported Web Servers are expected to include:

iPlanet Web Server
The iPlanet Web Server (Superceding Netscape Enterprise Server) is a likely future addition to
the validated IF Web Server products. For more detail on iPlanet Web Server, refer to iPlanet
on- line documentation available through the iPlanet web site, http://www.iplanet.com.

Microsoft Internet Information Server (IIS)
The Microsoft IIS is a likely future addition to the validated IF Web Server products. It is
expected that IIS would be deployed only on Windows 2000 (or above) given its full integration
at the operating system level.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

45

4.3.2.1.1.3 Servlet Engines
Servlet engines are effectively “plug- ins” to a Web Server to which a Web Server passes control
when a Servlet is requested. The Servlet engine is responsible for executing the requested
Servlet. The Servlet engine is also responsible for the processing of Java Server Pages.

Servlets are the Java platform technology of choice for extending and enhancing Web servers.
Servlets provide a component-based, platform independent method for building Web-based
applications, without the performance limitations of CGI programs. Servlets are server and
platform independent leaving one free to select a "best of breed" strategy for servers, platforms,
and tools.

Servlets have access to the entire family of Java APIs, including the JDBC API to access
enterprise databases. Servlets can also access a library of HTTP-specific calls and receive all the
benefits of the Java language, including portability, performance, reusability, and crash
protection.

JSP is a presentation layer technology that sits on top of a Java Servlets model and makes
working with HTML easier. It allows the user to mix static HTML content with server-side
scripting to produce dynamic output. By default, JSP uses Java as its scripting language;
however, the specification allows other languages to be used (such as JavaScript and
VBScript).

Currently validated Web Servers are the:

IBM WebSphere Application Server
The IBM WebSphere Application Server includes the Servlet engine. For more detail on IBM
WebSphere Application Server Servlet engine, refer to IBMs on- line documentation available
through the IBM web site found at http://www.ibm.com. In addition, IBM Redbooks on the
subject can be obtained from the IBM Redbooks web site at http://www.redbooks.ibm.com.

Future supported Servlet engines will be a function of any specific Web Servers and/or
Application Servers validated for IF incorporation.

4.3.2.1.1.4 Portal
Note Future Capability: This section will be added with a future release to identify the
AF Portal capability which at the time of this writing is defined and selected.

4.3.2.2 Enterprise Systems Management
The GCSS-AF Enterprise Systems Management (ESM) Facility manages the resources
comprising the enterprise in which the IF resides. Management includes configuring, monitoring,
and controlling these resources. ESM includes a collection of integrated tools, processes for
operating the tools, and the people for effecting the processes.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

46

GCSS-AF ESM is partitioned into three domains:

• System Management
• Application Management
• Network Management.

Each ESM domain may be divided into one or more management disciplines:

• Configuration Management
• Fault Management
• Integration Framework Management
• Performance Management
• Security Management
• Accounting Management

The ESM System Management domain includes Fault Management, Configuration Management,
Performance Management, Security Management, and Integration Framework Administration.
Systems Management encompasses the functions required to configure and monitor computer
system level resources (i.e. clients, servers, and attached peripheral devices). Agents that track
specific system resource (e.g. CPU, memory, disk space, and I/O) thresholds and continually
gauge the overall performance of the systems perform the monitoring process.

The ESM Application Management domain includes Fault Management, Configuration
Management, Performance Management, Security Management, and Integration Framework
Administration. Application Management encompasses all activities required to manage key
applications. This includes the identification, monitoring, tracking and fielding of software
components across the enterprise. Agents that track specific application-related thresholds and
continually gauge the overall performance of the systems perform the monitoring process. The
primary goal of Application Management is to increase application availability.

The ESM Network Management domain includes Fault Management, Configuration
Management, Accounting Management, Performance Management, and Security Management
of all network resources (e.g. routers, hubs, switches, gateways, and bridges).

Note: GCSS-AF ESM capabilities have been segmented into two categories: those that
will be implemented as part of the Integration Framework and those that are to be
provided by various support organizations, e.g. DISA/DMC, NCC, SSG/FAB.

4.3.2.2.1 Configuration Management
Configuration Management is planning, identifying, documenting, tracking, and controlling
changes to GCSS-AF required resources. Configuration Management of GCSS-AF required
resources include automated discovery of system, application and network resources.
Configuration Management also includes distribution and installation of software and
management of software licenses. Services within the Configuration Management discipline

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

47

include Inventory (Asset) Management, Electronic Software Distribution, and License
Management.

4.3.2.2.1.1 Inventory (Asset) Management
Inventory Management Services electronically capture an inventory of all network-addressable
GCSS-AF managed server and desktop computers. The Inventory system supports the Desktop
Management Interface (DMI) specification. The Inventory system is used to track the following
types of hardware information: manufacturer, type, model, CPU type, CPU speed, amount of
memory, number and size of disk drives, and warranty information.

The Inventory system is used to track the following types of software information per computer:
product name, vendor, license type, executable filename, size, version, path, creation/update date
and time of installation.

Inventory Management Services captures the enterprise inventory through an auto-discovery
mechanism. The enterprise inventory is retained in a database that can be queried to generate
reports reflecting inventory status. The information in the inventory database may be manually
created, updated and deleted.

4.3.2.2.1.2 Electronic Software Distribution
Electronic Software Distribution (ESD) Services distributes software components (e.g. new
software, upgrades, and patches) over the network to one or more GCSS-AF managed servers
and desktops within the GCSS-AF enterprise. Software distributed includes both Commercial
Off The Shelf (COTS) software and Government Off The Shelf (GOTS) software.

ESD Services synchronizes software installations across the enterprise and operates in
conjunction with Inventory Services to retrieve a list of systems in need of an update. During the
installation process all files being changed are backed up and automatically restored if the
installation fails.

End node users may alternatively pull software from a distribution server for installation at a
GCSS-AF managed server or desktop. A notification is provided the user that a software
component is available for installation.

4.3.2.2.1.3 License Management
The ESM License Management Service tracks and controls software licenses across the
enterprise. Software licenses can be managed per seat, per user, per managed server, per site, or
per enterprise. Concurrent software licenses are also managed. License metrics are collected and
tracked for:

• The number of users concurrently licensed to a product.

• The number of times a user has been denied a concurrent license.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

48

• The number of times a user has been denied installation of an application due to the lack of a

license.

• The number of installations of a product are collected and tracked.

4.3.2.2.2 Fault Management
Fault Management includes the correction of faults reported by system administrators, users and
automated fault detection services. Fault Management includes the functionality for establishing
a Help Desk to collect information about faults via a "trouble ticket" and tracking the fault
through to resolution. Services within the Fault Management discipline include Event
Management, Disaster Planning and Recovery, High-Availability Management,
Backup/Recovery, Help Desk, and Remote Management (i.e. Remote Diagnostics).

4.3.2.2.2.1 Event Management
The ESM Event Management Service collects and processes events generated by enterprise
components. The events are manifested as unsolicited messages written to log files and sent to an
enterprise level "event console" for display to the system administrator. A message may have
several different meanings. A message may be purely informational in nature, such as an
application reporting that a given action has occurred. A message may also be a report from a
system performance monitor complaining that a threshold has been exceeded.

Serious errors such as a disk drive error, a memory error or a power failure are also reported as a
message System parameters monitored include Central Processing Unit (CPU) utilization, disk
utilization, swap space utilization, memory utilization, disk drive speeds, and power utilization.
Unsolicited messages are received from operating systems, IF products, application software,
and performance monitoring software. These messages are automatically processed at the "event
console" and the system administrator is notified when a failure occurs or when performance has
dropped below a predefined threshold level. Methods of notification supported include an alert at
a system console, dialing a pager, or sending an e-mail message.

An enterprise level correlation engine categorizes the severity of a timed stamped sequence of
messages. Automatic recovery from selected faults and events is supported. Event messages can
be filtered to manage the alarm rate being displayed to the system administrator. Summary
reports of performance, utilization, and health status of each managed resource within the GCSS-
AF domain can be generated at the "event console".

4.3.2.2.2.2 High-Availability Management
The ESM High-Availability Management Service incorporates the fault tolerant capabilities of
the IF COTS product set, such as fail-over recovery mechanisms and redundant processing
techniques, to maximize IF availability.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

49

4.3.2.2.2.3 Backup-Recovery
The ESM Backup-Recovery Service performs backup and recovery of GCSS-AF managed
servers either centrally or locally. Backups include both file systems and databases. Backup
services are capable of backing up databases while the database remains online.

4.3.2.2.2.4 Help Desk Interface
The ESM Help Desk Interface utilizes an interface to the Help Desk / Trouble Ticketing system
supporting GCSS-AF (e.g. DISA/DMC, base NCC) for the automatic generation of trouble
tickets. The centralized Help Desk deployed by the authorized system administrator supports the
GCSS-AF system and Mission Applications. The Help Desk should provide interactive user
support 24 hours a day, 7 days a week for both in-garrison and deployed locations, and report
status back to the problem originator:

4.3.2.2.2.5 Remote Management
The ESM Remote Management Service supports the interface to remote control capabilities
utilized by an authorized system administrator supporting GCSS-AF (e.g. DISA/DMC, base
NCC) to allow remote management of a user's desktop.

4.3.2.2.2.6 Log Facilities
The ESM Log Facilities Service allows IF and Mission Applications to write messages to log
files. The messages can be prioritized to reflect the severity of its contents. Each message
subsequently becomes an event and is handled as outlined in Section 4.3.2.2.2.1.

4.3.2.2.3 Integration Framework Management
Integration Framework Administration includes managing Integration Framework resources such
as web servers, database servers and Middleware components.

4.3.2.2.3.1 Web Management
The ESM Web Management Service manages Web server content and performs Web content
configuration management. This service establishes thresholds for Web performance parameters
and subsequently monitors these parameters. Web Management Service generates events when
predefined thresholds are exceeded or errors are detected and passes these events to the Event
Management Services.

4.3.2.2.3.2 Enterprise Database Management
The ESM Enterprise Database Management Service is comprised of the capabilities provided by
the IF COTS product set (i.e. Oracle and DB2).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

50

4.3.2.2.3.3 Middleware Management
The ESM Middleware Management Service is comprised of the capabilities provided by the IF
COTS product set (i.e. Component Broker and MQSeries).

4.3.2.2.4 Performance Management
Performance Management is the process of maintaining performance of GCSS-AF required
resources in accordance with established baselines, goals, and policies. Performance focuses on
maintaining or improving the quality of service of the resources. Performance management has
a real-time component and longer-term functions. The longer-term aspects of performance
management include capacity planning, and modeling and simulation.

4.3.2.2.5 Security Management

Security Management is the regulation and administration of access to GCSS-AF required
resources in accordance with established guidance, directives, regulations, and policies. Security
management includes the distribution and maintenance of all security-related information such as
authentication keys, access control codes, and user accounts. Security management also includes
capabilities that help make the resources more secure such as encryption, intrusion detection, and
detection of security violations. Services within the Security Management discipline include;
Access Control, Identification, Authentication, Authorization, Intrusion Detection, Single Sign-
On, Encryption, Virtual Private Networks, Virus Detection, Audits, and Non-Repudiation and
Digital Signatures.

4.3.2.2.6 Accounting Management
Accounting Management enables charges to be established for the use of GCSS-AF resources
and for costs to be identified for the use of those resources. Accounting Management includes
functions to inform users of costs incurred or resources consumed; enable accounting limits to be
set and tariff schedules to be associated with the use of resources; and enable costs to be
combined where multiple resources are involved to achieve a given communications objective.

4.3.2.3 Information Management Common Facilities
Information Management Common Facilities provide facilities that enable information to be
modeled, stored, retrieved, moved, and interchanged within an information system. Information
includes both codified information held in structured databases and documentary information
held in text, image, or some other form. The packages included under Information Management
Common Facilities are illustrated in Figure 10: Packages of the Information Management
Common Facilities.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

51

Figure 10: Packages of the Information Management Common Facilities

A good portion of the facilities identified under Information Management Common Facilities is
to be provided in later releases of the Integration Framework.

4.3.2.3.1 Information Management Storage and Retrieval Facility
Information Management Storage and Retrieval facilities comprise the higher- level storage and
retrieval specifications for distributed applications. These facilities encompass all database
products. This includes relational databases, object oriented databases and interfaces, on- line
Analytical Processing databases and tools, and directory services used in locating objects,
databases, storage systems, etc. The IF currently provides only data access services
encompassing the Oracle and IBM DB2 relational database products and LDAP Directory
Services using the IBM SecureWay directory server.

4.3.2.3.1.1 Metadata Repository and Services
Note Future Capability: A metadata repository is central storage place to collect,
integrate and deploy information about enterprise data. Repository services include
numerous interfaces and scanners for various programming languages, DBMS and third
party tools (i.e. CASE tools, data movement tools, etc.). The interfaces and scanners
extract the appropriate metadata from the source and populate the repository data store. A
metadata repository is to be provided in later releases of the Integration Framework.

4.3.2.3.1.2 On-Line Analytical Processing
Note Future Capability: OLAP (online analytical processing) enables a user too easily
and selectively extract and view data from different points-of-view. To facilitate this kind
of analysis, OLAP data is stored in a "multidimensional" database. A multidimensional
database considers each data attribute (such as product, geographic sales region, and time
period) as a separate "dimension. " OLAP software can locate the intersection of

Metadata Repos-
itory & Services

On-Line Analytical
Processing

Data Warehouse

Decision
Support System

Data Marts

Extract,
Transform, Load

Transformation
Service

Extraction
Service

Loading Service

Data Access
Services

(IBM) DB2

Sybase RDBMS

Oracle RDBMS

LDAP Directory
Services

Info Storage and
Retrieval Facility

BOD Support

EDI Support

XML Services

Information
Interchange

Data Encoding &
Representation

Time Operations

Info. Mgmt.
Common Facilities

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

52

dimensions and display them. Attributes such as time periods can be broken down into
sub-attributes.

OLAP can be used for data mining or the discovery of previously undiscerned
relationships between data items. An OLAP database does not need to be as large as a
data warehouse, since not all transactional data is needed for trend analysis. OLAP is
further decomposed into the following facilities:

Decision Support Systems
A decision support system can be described as an interactive, computer-based system
designed to help decision-makers solve poorly structured problems. Using a combination
of models, analytical techniques, and information retrieval, such systems help develop
and evaluate appropriate alternatives. DSS can be thought of as a data analysis system
that makes it easy to manipulate data using computerized analytical tools like statistics
packages, data mining, etc. The more sophisticated enterprise-wide analysis systems
provide access to a series of decision-oriented databases or datamarts, predefined models
and charts, and triggers and alerts linked to events or variables in the “corporate” data
warehouse.

Data Marts
A data mart is a repository of data gathered from operational data and other sources that
is designed to serve a particular community of knowledge workers. In scope, the data
may derive from an enterprise-wide database or data warehouse or be more specialized.
The emphasis of a data mart is on meeting the specific demands of a particular group of
knowledge users in terms of analysis, content, presentation, and ease-of-use. Users of a
data mart can expect to have data presented in terms that are familiar.

Data Warehouses
A data warehouse is a central repository for all or significant parts of the data that an
enterprise's various business systems collect. Data from various online transaction
processing (OTP) applications and other sources is selectively extracted and organized on
the data warehouse database for use by analytical applications and user queries. Data
warehousing emphasizes the capture of data from diverse sources for useful analysis and
access, but does not generally start from the point-of-view of the end user or knowledge
worker who may need access to specialized, sometimes local databases.

Extract, Transform, and Load Tools
In managing databases, extract, transform, load (ETL) refers to three separate functions
combined into a single programming tool. First, the extract function reads data from a
specified source database and extracts a desired subset of data. Next, the transform
function works with the acquired data - using rules or lookup tables, or creating
combinations with other data - to convert it to the desired state. Finally, the load function
is used to write the resulting data (either all of the subset or just the changes) to a target
database, which may or may not previously exist.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

53

ETL can be used to acquire a temporary subset of data for reports or other purposes, or a
more permanent data set may be acquired for other purposes such as: the population of a
data mart or data warehouse; conversion from one database type to another; and the
migration of data from one database or platform to another.

On-Line Analytical Processing facilities are a future Integration Framework addition.

4.3.2.3.1.3 Data Access Services
Data Access Services are made available to applications to access data storage. This includes the
client software utilized to access relational databases and directory services. The IF provides
these client services for the Oracle (Oracle Home Page) and IBM DB2 (IBM Home Page or IBM
Redbooks Home) relational databases and LDAP services (LDAP Specification) to the IBM
SecureWay directory server (IBM Home Page or IBM Redbooks Home).

4.3.2.3.2 Data Encoding and Representation
Note Future Capability: Data Encoding and Representation provides support for data
format and translations. Only Time operations have been identified to date. Data
Encoding and Representation facilities are a future Integration Framework addition.

4.3.2.3.2.1 Time Operations
Note Future Capability: Time Operations provides support for the manipulation of
calendar and time data. Time Operations facilities are a future Integration Framework
addition.

4.3.2.3.3 Information Interchange
Information interchange facilities support the interchange of information between different users
and different software components. The information interchange facilities provided by the
Integration Framework include support for creating and processing BODs, XML Services for
processing XML based messages, and EDI Support for creating and processing EDI messages.

Note Future Capability: EDI Support facilities are a future Integration Framework
addition.

4.3.2.3.3.1 Business Object Document Support
Business Object Document (BOD) Support facilities are those that aid in the creation and
processing of BODs. This includes a standard class for the BOD control area and a “template”
for the BOD (business) data area. These facilities also include DTD (segments) from OAG for
the BODs utilized for the IF test components (refer to Section 5.1.7 Test Component
Descriptions).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

54

4.3.2.3.3.2 Electronic Data Interchange Support
Note Future Capability: Electronic Data Interchange (EDI) support facilities are those
that aid in the creation and processing of BODs. EDI support facilities are a future
Integration Framework addition.

4.3.2.3.3.3 XML Services
XML Services are those that aid in the creation and processing (parsing) of XML documents.
This includes an XML parser and an approach to eliminate the need to send the DTD with a
message but still have the DTD located locally.

4.3.2.4 Internationalization

Internationalization involves all tasks related to making applications run in multiple countries
while adhering to local standards. Currently, only the following package has been identified as
illustrated in Figure 11: Internationalization Package. The current release of the IF includes only
those facilities provided by the Java internationalization framework available in JDKTM 1.1 and
later.

Figure 11: Internationalization Package

The Java internationalization framework (based on the internationalization framework developed
by TaligentTM) introduces various terms and specific classes to support internationalization. For
Java, locale identifies a certain geographic or political region for which spoken language and
format conventions are specific. The locale object does not contain any locale specific data;
rather it serves as an identifier for a certain geographic or political region. Therefore, each class
within the application that has locale sensitivity shall provide a method that returns the locales
supported by the class.

Resource bundling is a means of separating the program code from all locale-specific data. An
example of resource bundling is separating the text on a button from the button itself. Java
provides a ResourceBundle class specifically designed to aggregate the resources needed for a
specific locale. ResourceBundle is an abstract class that shall either be sub classed or one of its
subclasses. ListResourceBundle (an abstract class) is used to store the localized data in an array
of type Object. When sub classing ListResourceBundle, the developer shall override the
getContents method and provide an array, where each item in the array consists of a String pair.
The first element in the pair is the key and the second is the value associated with that key. For
each locale supported a subclass of ListResourceBundle will be provided.

PropertyResourceBundle is an abstract subclass of ResourceBundle that manages resources
for a particular locale by using a set of static strings from a property file. Property files contain
text lines made up with keys and their corresponding values and are held in a .property file type.

International-
ization

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

55

To obtain a text line, use the ResourceBundle.getString method passing the associated key. Note
that the PropertyResourceBundle can only be used to store strings, not other objects.

Another aspect of dealing with internationalize is the formatting of data which includes
messages, numbers, percentage, currency, date, and time. Java provides various classes to
support formatting of these data types.

These and other capabilities within Java provide the basis for creating internationalized GUIs.
These capabilities can be used (by the GUI developer) in conjunction with the business-related
components to extend their reusability.

4.3.2.5 Task Management Common Facilities
Note Future Capability: Task Management facilities provide an infrastructure for
applications and desktops that model and support the processing of user tasks. The
infrastructure contains facilities for managing user and project workflows, rules, and
communications. Task Management facilities are a future Integration Framework
addition.

The packages of Task Management Common Facilities are illustrated in Figure 12:
Packages of Task Management Common Facilities.

Figure 12: Packages of Task Management Common Facilities

4.3.2.5.1 Workflow Facility
Note Future Capability: The Workflow Facility provides management and coordination
of objects that are part of a work process. The Workflow Facility should provide support
for:

Production-based Workflow
A structured, pre-defined process that is governed by policy and procedure. Areas in
which this type of workflow is applicable include configuration management, service
requests, document routing and review, purchase orders, etc.

Ad Hoc Coordination-based Workflow
An evolving workflow defined by one or more people to support coordination of
knowledge workers. This type of workflow is not predefined, and is intended to support
knowledge workers in their daily activities. Areas in which this type of workflow is

Task Mgmt.
Common Facilities

Workflow
Facility

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

56

applicable include strategic planning, quick reaction requests, ad hoc tasking and request,
etc.

Workflow Facility is a future Integration Framework addition.

4.4 Reusable Business Component Support
Note Future Capability: Relative to applications, the contents of this area include
templates for building business objects/components and applications. It is envisioned that
the IF will eventually provide templates and/or extensible classes for component
initialization, transaction support across geographically separated processing centers,
Web Interface structure, Legacy and external system interface, etc. These would be
provided as aids to and/or examples for the developer. The full scope of items cataloged
under Reusable Business Component Support will in many cases be derived from actual
application developments and abstracting out components, templates, base and/or abstract
classes that can be used to support the development of multiple applications and/or
components.

The packages encompassed by the Reusable Business Component Layer are illustrated in
Figure 13: Packages of the Reusable Business Component Support.

Figure 13: Packages of the Reusable Business Component Support

Reusable Business Component Support items are a future Integration Framework
addition.

4.4.1 Business Component Support
Note Future Capability: Business Component Support items include those items such as
application or component initialization templates, application controller templates, etc.
The full scope of this area will be dictated by evolving Business Component design
needs. Business Component Support items are a future Integration Framework addition.

Reusable Business
Component Support

Web GUI SupportBusiness Comp.
Support

Transaction Coord.
Support

OAG Derived
Components

BSR Support

Messaging
Support

Interface Comp.
Support

External Intf.
Comp. Support

Legacy Interface
Comp. Support

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

57

4.4.2 Web GUI Support
Note Future Capability: Web GUI Support items include those items such as view
controller templates, Portlet templates, etc. The full scope of this area will be dictated by
evolving Web Interface design needs. Web GUI Support items are a future Integration
Framework addition.

4.4.3 OAG Derived Components
Note Future Capability: OAG Derived Components items include those items that
support the development of components dictated by the application of the Open
Application Group Integration Specification in GCSS-AF application design. The full
scope of this area will be dictated by evolving Business Component design needs.

Categories expected to be included under OAG Derived Components include:

BSR Support
BSR Support for the development of components to provide the (OAG) Business Service
Request implementations for the BODs that an application or component will “service”.
This may include event handlers, dispatchers to route a BOD to the appropriate handler,
etc.

Messaging Support
Messaging Support for the handling and routing of OAG specified (BOD) messages. An
example might be a Message Listener.

OAG Derived Components items are a future Integration Framework addition.

4.4.4 Legacy Interface Component Support
Note Future Capability: Legacy Interface Component Support items include those items
such as templates for the GCSS-AF front-end (e.g. BSRs), conversion utilities to convert
between GCSS-AF message formats and Legacy system formats, templates or base
classes for aiding in Legacy system login, screen scraper based interfaces, etc. The full
scope of this area will be dictated by evolving Business Component design needs.

Legacy Interface Component Support items are a future Integration Framework addition.

4.4.5 External Interface Component Support
Note Future Capability: External Interface Component Support items include those
items such as templates for the GCSS-AF front-end (e.g. BSRs), conversion utilities to
convert between GCSS-AF message formats and external system formats, templates or
base classes for aiding in any external system login, etc. The full scope of this area will
be dictated by evolving Business Component design needs.

External Interface Component Support items are a future Integration Framework
addition.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

58

4.4.6 Transaction Coordination Support
Note Future Capability: Transaction Coordination Support items include those items
that might provide a higher level of transaction coordination. For example a template
might be provided that can act as a transaction controller too not only initiate the
transaction but also to handle transaction completion including transaction exceptions and
subsequent rollback. The full scope of this area will be dictated by evolving Business
Component design needs.

Transaction Coordination Support items are a future Integration Framework addition.

4.5 Service to Product Mapping
The following tables provide a mapping of the services and capabilities provided by the IF to the
products that implement the service or capability. The specific versions of products relative to
an IF release can be found in the Integration Framework Version Description Document.

Table 1: Service to Product Mapping: Infrastructure

Service/Capability Provided Supporting Product(s)
Platforms
Sun Microsystems Sun
HP Hewlett-Packard
Intel Many

Cisco Local Director
Network Devices

Other – DISA Provided
Operating Systems and Services
Solaris Sun
HP/UX Hewlett-Packard
Windows NT Microsoft
Windows 95/98 Microsoft
Windows 2000 Microsoft
Database Engines IBM DB2

IBM (as provided by WebSphere)
Java Virtual Machine

SUN
Network Services

Table 2: Service to Product Mapping: Integration Services

Service/Capability Provided Supporting Product(s)
Distributed Control
CORBA IBM WebSphere Enterprise Edition
Enterprise Java Platform IBM WebSphere
COM+ Microsoft – future
Distributed Computing Environment (DCE)

IBM WebSphere Advanced Edition
Application Server

IBM WebSphere Enterprise Edition
Messaging
Message Oriented Middleware IBM MQSeries

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

59

Service/Capability Provided Supporting Product(s)
Open Application Middleware API Specification
(OAMAS) IBM Application Message Interface (AMI)

Java Messaging Service (JMS) Future
CORBA 3.0 Messaging Future
Distributed Data Access
Open Database Connectivity (ODBC)
Java Database Connectivity (JDBC
Net8 / SQLNet Oracle Net8

Operating Systems
Solaris, HP/UX, Microsoft Windows

IBM WebSphere Distributed Communications Protocols

Web Browsers
Netscape, Microsoft IE

Network Time Protocol As provided by DISA

Table 3: Service to Product Mapping: Technical Services/Services

Service/Capability Provided Supporting Product(s)
Event (and Notification) Service IBM WebSphere Enterprise Edition
Naming Service IBM WebSphere Enterprise Edition
Trader Service Future
Life Cycle Service IBM WebSphere Enterprise Edition
Licensing Service Future

Time Service
Operating Systems
Solaris, HP/UX, Microsoft Windows

Persistence Service IBM WebSphere Enterprise Edition
Transaction Service IBM WebSphere Enterprise Edition
Query Service IBM WebSphere Enterprise Edition
Concurrency Service IBM WebSphere Enterprise Edition
Relationship Service IBM WebSphere Enterprise Edition
Collection Service Future

IBM/Tivoli Policy Director
Security Services

IBM WebSphere Enterprise Edition

Table 4: Service to Product Mapping: Technical Services/Facilities

Service/Capability Provided Supporting Product(s)
User Interface Common Facilities
Web Services

Netscape Communicator
 Web Browsers

Microsoft Internet Explorer
 Web Servers IBM WebSphere
 Servlet Engine IBM WebSphere Advanced Edition
Enterprise Systems Management
Accounting Management Future
Configuration Management
 Inventory (Asset) Management Future
 Electronic Software Distribution Future

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

60

Service/Capability Provided Supporting Product(s)
 License Management Future
Fault Management
 Event Management Tivoli as supplied by DISA
 High-Availability Management Future

 Backup-Recovery
Operating Systems
Solaris, HP/UX, Microsoft Windows

 Help Desk Interface Future
 Remote Management Future
 Log Facilities Log4j (as supplied through LMSI-O)
Integration Framework Management
 Web Management IBM WebSphere Advanced Edition

 Enterprise Database Management
Database Engines (inc. utilities)
IBM DB2, Oracle RDBMS
IBM WebSphere

 Middleware Management
IBM MQSeries (utilities)

Performance Management Future
Security Management IBM/Tivoli Policy Director
Information Management Common Facilities
Information Management Storage and Retrieval Facility
 Metadata Repository and Services Future
 On-Line Analytical Processing Future

IBM DB2

Oracle RDBMS Data Access Services
IBM/Tivoli SecureWay Directory Server (LDAP)

Data Encoding and Representation
 Time Operations Future
Information Interchange
 BOD Support LMSI-O provided BOD classes
 EDI Support Future
 XML Services
Internationalization Future
Task Management Common Facilities
 Workflow Facility Future

Table 5: Service to Product Mapping: Reusable Business Component

Service/Capability Provided COTS Product
Business Component Support LMSI-O provided templates/examples
Web GUI Support LMSI-O provided Menu Servlet
OAG Derived Components Future
Legacy Interface Component Support Future
External Interface Component Support Future
Transaction Coordination Support Future

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

61

4.6 How The IF Provides Services and Facilities
The IF provides the following to aid in the development of a MA implementation model and for
the implemented MA to access IF services and facilities:

UML Model
A UML model (the GCSS-AF Systems Solutions UML Model, also know as “the model”) is
provided which describes the services and facilities that are provided by the GCSS-AF IF. This
model also contains examples of how applications might use these services.

COTS Products
All COTS products are provided as delivered by the vendor on CD. Vendor products need be
installed and configured as required by the configuration on which the product(s) are to be
installed. These may be development configurations, test configurations, and/or deployed
configurations. Refer to the GCSS-AF IF Installation Procedures for specific installation
guidance.

Class Libraries
There are a set of jar files and class libraries that are provided for the use of applications that
require the services or capabilities provided by the IF. For descriptions of what is available, how
to get them, and how to use them, reference either the model or Section 5 Design Guidance for
GCSS-AF Applications Using the IF.

Code Templates, Base Classes, and Helper Classes
The IF provides a set of code templates and base classes that may be extended for the specific
use of the application. Based on the design of the application the developer will choose a set of
products to be used for implementation. These products will include the products specified by
the IF as well as any additional product for unique requirements of the application. The selected
products specified by the IF may have a set of code templates and/or helper classes associated
with them that would be used to guide the development of the components of the application.
An example of this would be code templates and helper classes for integrating the application
with the IBM MQSeries product. The templates in this case provide a level of separation for the
application business logic from the infrastructure support. The templates are in skeleton form
and would be modified for specific use by the application. The helper classes constitute the
interface that application developers will use to make the task of the application developer
simpler and remove the specifics of the product from the interface.

Table 6: Sample Identification of Code Template, Base Class, and Helper Class, provides an
identification of an item for each of these categories. The complete list of available items, along
with details for their usage can be found in Appendix A of this document.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

62

Table 6: Sample Identification of Code Template, Base Class, and Helper Class

Item Type Use

Application Initialization
Code
Template

Provides a template that can be used by application
developers as a starting point for the code required to
initialize an application. Essentially a tailor-able
example.

GCSS-AF Servlet Base Class

Adds connections to IF services to complete
interaction with security services. Intended to be used
as bas e class for Servlets developed for GCSS-AF
applications.

AMI Helper Classes Helper Class
The AMI Helper classes provide additional services
that an application can call to "help" in using the AMI
to send and receive messages.

5. Design Guidance for GCSS-AF Applications Using the IF
This section provides the application developer basic design guidance to utilize the Integration
Framework capabilities. It contains specific information about the interfaces provided, their
intended use by applications, architectural recommendations for the application structure, and IF
COTS product configuration expectations and considerations. This section (or guide) is not
intended to identify how to configure or set-up IF services and/or components; it only describes
how to utilize and interact with those capabilities.

The intended audience for this section is architects and developers who are familiar with object-
oriented design and development, the Common Object Request Broker Architecture (CORBA),
and the Java 2 Enterprise Edition (J2EE) technology. In addition, the user should also be familiar
with the concept of Component Based Development as discussed in the Application Framework
Developer’s Guide.

As the Open Application Group Interface Specification (OAGIS) is employed to define the
coarse- level business components, the user should also be familiar with that specification.
Business components identified within this specification such as Invoicing, Accounts
Receivable, and General Ledger are examples of components referred to as OAGIS coarse- level
components within this developer’s guide. The guidance that follows assumes that components
have been defined to this level, and associated Business Object Documents (BODs) and
interfaces have been defined for each component. This guidance also assumes that all pertinent
requirements and use cases have been allocated to these components.

Section 5.1 Mission Application Architecture Considerations provides the bridge between the
component specification guidance of the Application Framework Developer’s Guide and the
technical component development guidance in the sections following 5.1. Distinctions between
new designs, migrated designs, wrapped (Legacy) applications, and interface components are
primarily limited to 5.1 Mission Application Architecture Considerations and its subsections.
Throughout Section 5 references are made to the Integration Framework test components as well
as citing as examples these same test components. These test components were developed both

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

63

as the means to test and exercise the Integration Framework and to provide examples to
developers of how to use the IF and its services.

A web site is provided by SSG to obtain all pertinent software and guidance associated with the
Integration Framework. Included at this web site are:

• Guidance for obtaining required vendor software.

• All required Integration Framework (non-vendor) software.

• The Integration Framework test components.

• Integration Framework documentation.

5.1 Mission Application Architecture Considerations
This section provides a generalized description of the structure and composition of a mission
application. After the mission application architecture has been defined in terms of OAGIS
coarse-grain components, the architect/designer shall choose the major design components that
will be required to satisfy the requirements allocated to these OAGIS-coarse grain components.
This structure and associated elements provides the context in which the description and use of
IF capabilities are described.

This section provides an overview of the architectural considerations that need to be made when
specifying, developing, migrating, adapting, or interfacing an application within the GCSS-AF
enterprise. It is intended to provide a road map for the actual development of an application or
application interface.

Section 5.1.1 Reference Application Model describes the two major models used as the reference
for specifying an application.

Section 5.1.2 Reference Application Development Process identifies the various ana lysis, design,
and implementation components and the reference process in which these components would be
specified, developed, and implemented. It also defines the relationships (mappings) between the
components identified in each of the analysis, design, and implementation phases.

Section 5.1.3 Application Integration provides a brief description of the possible ways of
integrating applications. This section also provides a brief identification of the name space and
naming conventions specified by GCSS-AF..

Section 5.1.4 Application Security Responsibilities – provides a very brief introduction to
security activities required in developing an application.

Section 5.1.5 Application and Integration Framework Integration Points identifies / summarizes
the integration points between an application and the Integration Framework.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

64

5.1.1 Reference Application Model
The reference model for GCSS-AF applications is centered on two complimentary and well-
proven models for distributed, client/server applications. These are the n-tier model for
decomposing an applications presentation, business, and data processing into separate
manageable layers and the Model-View-Controller (MVC) design pattern that allocates
processing responsibilities to these components. This section will provide a brief orientation to
these models. For detail description of these models, numerous articles and books are
commercially available or accessible over the Web and should be consulted.

5.1.1.1 N-Tier Model
N-Tier is the model specified for GCSS-AF application development. This model involves
dividing the application into 3 or more independent layers or tiers, each of which can run on the
same machine or all running on different machines. This multi- tier architecture allows the
application to scale across multiple processors on different machines. Figure 14: N-Tier (Mission
Application) Architecture illustrates the different tiers (layers) in which components of an
application will reside.

Figure 14: N-Tier (Mission Application) Architecture

Presentation Layer
Components in this layer define how the data is rendered and manipulated by the user. This can
be as simple as any web browser, or may be very complicated using customized controls, forms,
Servlets, JSPs, and distributed object models. Note that current Web application designs, the
presentation layer is spread across both client (browser) and server machines.

Logical Architecture

Data Layer
(Access and
Management Tier)

Presentation Layer
(Client-Side Tier)

Presentation Tier
(Server-Side Tier)

Web Server
And
Servlet Engine

Browser Desktop

HTML Applet Java Application

J2EE
Platform

Servlet
Servlet

Servlet

JSP
JSP

JSP

Other Device

J2EE Client

Business Logic Layer
(Business Rules Tier)

Application
Server

EJB
EJB

EJB

CORBA Comp.
CORBA Comp.

CORBA Comp.
J2EE

Platform

(HP)

(Sun)

(Sun)

(NT)

(HP)

(Sun)

(NT)

(NT)

(Sun)

(Sun)

Two
Possible
Physical
Allocations

Logical Architecture

Data Layer
(Access and
Management Tier)

Presentation Layer
(Client-Side Tier)

Presentation Tier
(Server-Side Tier)

Web Server
And
Servlet Engine

Browser Desktop

HTML Applet Java Application

J2EE
Platform

Servlet
Servlet

Servlet

JSP
JSP

JSP

Other Device

J2EE Client

Business Logic Layer
(Business Rules Tier)

Application
Server

EJB
EJB

EJB

CORBA Comp.
CORBA Comp.

CORBA Comp.
J2EE

Platform

(HP)

(Sun)

(HP)(HP)

(Sun)(Sun)

(Sun)

(NT)

(HP)

(Sun)(Sun)

(NT)(NT)

(HP)(HP)

(Sun)

(NT)

(NT)

(Sun)(Sun)

(NT)(NT)

(NT)(NT)

(Sun)(Sun)

(Sun)(Sun)

Two
Possible
Physical
Allocations

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

65

Business Logic Layer
Components in this layer contain and execute the logic behind the application and do not contain
any user interface. It can only be accessed by another program or component. For example, this
may be the logic for an inventory control application.

Data Layer
Components in this layer provide and maintain the actual data (and/or) services required by the
application. Its sole responsibility is to manage data and services. It may contain some of the
business logic, such as SQL stored procedures.

For GCSS-AF, this general approach is applicable to all the following types of applications:

New and/or Migrated Application – is an application that has been developed as either
a new application to GCSS-AF requirements or has been “converted” from a Legacy
application meeting GCSS-AF requirements. Note that the migration of a Legacy
application may very well be accomplished incrementally while maintaining application
operation. During such a migration, the application would (allowably) be a mix of
migrated and wrapped application types.

Wrapped (Legacy) Application – is a Legacy (or COTS) application for which a
wrapper(s) (i.e. interface components) have been developed. Interface components
provide GCSS-AF specified application interface styles to Legacy systems or COTS
products that do not make available GCSS-AF style interfaces.

Interfaced Application – is a Legacy (or COTS) application whose data/database can be
accessed directly or indirectly from an application meeting GCSS-AF requirements.

Based on the N-Tier model, all applications, regardless of type, should generally exhibit the
design structure illustrated in Figure 15: Top-Level Mission Application Reference Design. The
identified component categories (Presentation, Business, and Data) map directly to the layers of
the n-tier model. Note that depending upon the application, not all of the categories may be
required. For example, some type of service (application) may be required to provide an interface
to a Legacy system and represent that Legacy system to other GCSS-AF applications and require
no user interface (i.e. presentation components); this is the rational for the intermediate (and
arbitrary) Application category. Or an application may be required to simply display information
from an existing application and effectively only require presentation components.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

66

Figure 15: Top-Level Mission Application Reference Design

These component categories should first be populated with analysis level logical components
that will then be refined to design/implementation (technology) components such as Servlets,
JSPs, CORBA components, EJBs, databases, etc. This is nothing more than specifying a design,
developing a design to meet application specification (i.e. design- level components) and then
implementing them (implementation components). Note that this maps directly to the Analysis,
Design, and Implementation categories of the GCSS-AF Rose Model.

5.1.1.2 Model-View-Controller Design Pattern
The Model-View-Controller design pattern is the reference structure for a GCSS-AF Mission
Application. This does not mean that all applications need be built on this model; only that it
should be viewed as a reference point for establishing the actual design structure for an
application. It also serves to provide a context for discussion of the components of an
application. One source of reference, from which the much of this MVC section was obtained, is
the IBM Redbook, Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition.

User-to-business applications encompass interactions that have a common set of processing
requirements that need to be considered on the server side of the application. These interactions
are easily mapped to the classical Model-View-Controller design pattern as illustrated in Figure
16: Model-View-Controller Design Pattern.

Figure 16: Model-View-Controller Design Pattern

Data
Components

Web
Application

Presentation
Components

Business
Components

Application

Data
Components

Web
Application

Presentation
Components

Business
Components

Application

Server-Side processing

Client
(browser)

Controller
Interaction
Controller

View
Page

Construction

Model

Business Logic & Data

Server-Side processing

Client
(browser)

Controller
Interaction
Controller

View
Page

Construction

Model

Business Logic & Data

Model

Business Logic & Data

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

67

In the Model-View-Controller (MVC) paradigm the user input, the modeling of the external
world, and the visual feedback to the user are explicitly separated and handled by three types of
components, each specialized for its task. Model represents the application object that
implements the application data and business logic. The Controller is responsible for receiving
the client request, invoking the appropriate business logic, and based on results, selecting the
appropriate view to be presented to the user. The following descriptions are from the perspective
of a web application.

(Interaction) Controller
The controller’s primary responsibility is mapping HTTP protocol-specific input into the input
required by the protocol- independent business logic, scripting the business logic elements (of
business objects/components) together and then delegating to a page construction component
(view) that will create the response page to be returned to the client.

Typically functions performed by the controller include:

• Validate the request and session parameters used by the interaction. (Page Controller)

• Verify that the client has the necessary privileges to access the requested business task.

(Page Controller)

• Transaction demarcation. (Application Controller)

• Invoke business logic components to perform the required tasks. This includes mapping
request and session parameters to the business logic component’s input properties, using
the output of these components to control logic flow and correctly chain the business
logic. (Page Controller and Application Controller)

• Call the appropriate page constructor component based on the output of one or more of

the business logic components. (Page Controller)

View (Page Constructor)
The page constructor is responsible for generating the HTML page that will be returned to the
client; it is the view component of the application. In many cases the controller may pass the
dynamic data as objects (or JavaBeans) for formatting. In other cases, the display page may
invoke business logic directly to obtain dynamic data. The latter should be used with great
caution as it increases both the complexity and processing requirements of the display page.
Once the page constructor has the dynamic data it will typically format the data.

Model (Business Logic and Data)
The business logic, which also encapsulates the business data, is responsible for satisfying client
requests. (Note that clients are not restricted to just human users but may be other applications as
well.) As such, business logic shall address a wide range of potential requirements that include
ensuring transactional integrity of application components, managing and accessing application

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

68

data, supporting the coordination of workflow processes, and integrating application components
and applications including Legacy applications.

Mapping to N-Tier Model
The MVC model components have a specific mapping to the N-Tier model layers. The Model
maps directly to the Business Logic and Data layers and the View maps directly to the
Presentation layer. The Controller mapping is not so direct for GCSS-AF. This is due to the fact
that the controller is “controlling” both presentation and business components. As such, the
controller can be considered a composite of two controllers; a page controller managing the
presentation processing and an application controller that manages the work or process flow of
the business logic. Refer to Figure 17: Model-View-Controller Extended Design Pattern.
Typically (but not necessarily) the page controller would map to the Presentation layer and the
application controller to the Business Logic layer.

Figure 17: Model-View-Controller Extended Design Pattern

(This controller distinction is especially important for application-to-application requests and
associated processing; in such cases presentation related processing on the part of the serving
application is required. All business logic control would be provided through the application
controller.)

5.1.2 Reference Application Development Process
This section describes (in brief) the reference process from which the various components that
will comprise an application are defined and developed. While this reference process is
illustrated as a sequential (waterfall) flow, it is for reference only; the actual process employed is
left to the application development team or organization. However, for sake of consistency,
communication, and reuse within the GCSS-AF Enterprise community, development teams or

Server-Side processing

Client
(browser)

Model

Business Logic & Data

(Interaction) Controller

Page
Controller

Application
Controller

View
Page

Construction

Server-Side processing

Client
(browser)

Model

Business Logic & Data

Model

Business Logic & Data

(Interaction) Controller

Page
Controller

Application
Controller

Application
Controller

View
Page

Construction

View
Page

Construction

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

69

organizations are expected to define the components identified herein. In addition, this
information should be captured in the GCSS-AF Rose Model.

The reference process is illustrated in Figure 18: Reference Mission Application Development
Process. It assumes that application requirements have been defined and allocated to this
application and that the Business Model as identified in the Figure 18: Reference Mission
Application Development Process has been developed. Refer to the GCSS-AF Application
Developer’s Guide for a description of a Business Model.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

70

Figure 18: Reference Mission Application Development Process

Develop
Analysis Model

Require
-ments

Business
Model

Develop Design
Define

Deployment

Deployed System

Application
(Implementation)Presentation

Business

Data

Physical
System

Implement
Design

Analysis Components

Presentation
MVC: View

Page
e-Form
Portlet
Data Access

MVC: Controller
Page Controller

Business
MVC: Model

Business Service Component
Business Logic Component
Business Object Document
Interface Component

MVC – Controller
Application Controller

Data
Data Object
Data Model
Data File

Design Components

Presentation
HTML
Servlet
JSP
Applet
JavaBean
Config. Data

Business
Application Object /

Session Bean (EJB)
Business Object /

Session Bean (EJB) /
Entity Bean (EJB)

JavaBeans
DTD

BOD
Class/Class Libraries

BOD
Helper

Home /
Namespace

Config. Data

Data
Database (inc. replication)

Schema / DDL
Data Object
Data File
Messaging

Queue
Queue Manager / Channel
Pub/Sub Broker
Message Listener

Implementation Components

Presentation
Design Components
Class /

Class Libraries
Property File
Additional

HTML
Servlet
JSP
Applet

JAR File

Business
Design Components
Classes/Class Libraries
JavaBean
Property File
Additional

Application Object /
Session Bean (EJB)

Business Object /
Session Bean (EJB) /
Entity Bean (EJB)

JAR File

Data
Design Components
Persistent Object
Data File
Additional

Data Object
Schema / DDL

Develop
Analysis Model

Require
-ments

Business
Model

Develop Design
Define

Deployment

Deployed System

Application
(Implementation)Presentation

Business

Data

Physical
System

Deployed System

Application
(Implementation)Presentation

Business

Data
Application

(Implementation)Presentation

Business

Data

Physical
System

Physical
System

Implement
Design

Analysis Components

Presentation
MVC: View

Page
e-Form
Portlet
Data Access

MVC: Controller
Page Controller

Business
MVC: Model

Business Service Component
Business Logic Component
Business Object Document
Interface Component

MVC – Controller
Application Controller

Data
Data Object
Data Model
Data File

Analysis Components

Presentation
MVC: View

Page
e-Form
Portlet
Data Access

MVC: Controller
Page Controller

Business
MVC: Model

Business Service Component
Business Logic Component
Business Object Document
Interface Component

MVC – Controller
Application Controller

Data
Data Object
Data Model
Data File

Design Components

Presentation
HTML
Servlet
JSP
Applet
JavaBean
Config. Data

Business
Application Object /

Session Bean (EJB)
Business Object /

Session Bean (EJB) /
Entity Bean (EJB)

JavaBeans
DTD

BOD
Class/Class Libraries

BOD
Helper

Home /
Namespace

Config. Data

Data
Database (inc. replication)

Schema / DDL
Data Object
Data File
Messaging

Queue
Queue Manager / Channel
Pub/Sub Broker
Message Listener

Design Components

Presentation
HTML
Servlet
JSP
Applet
JavaBean
Config. Data

Business
Application Object /

Session Bean (EJB)
Business Object /

Session Bean (EJB) /
Entity Bean (EJB)

JavaBeans
DTD

BOD
Class/Class Libraries

BOD
Helper

Home /
Namespace

Config. Data

Data
Database (inc. replication)

Schema / DDL
Data Object
Data File
Messaging

Queue
Queue Manager / Channel
Pub/Sub Broker
Message Listener

Implementation Components

Presentation
Design Components
Class /

Class Libraries
Property File
Additional

HTML
Servlet
JSP
Applet

JAR File

Business
Design Components
Classes/Class Libraries
JavaBean
Property File
Additional

Application Object /
Session Bean (EJB)

Business Object /
Session Bean (EJB) /
Entity Bean (EJB)

JAR File

Data
Design Components
Persistent Object
Data File
Additional

Data Object
Schema / DDL

Implementation Components

Presentation
Design Components
Class /

Class Libraries
Property File
Additional

HTML
Servlet
JSP
Applet

JAR File

Business
Design Components
Classes/Class Libraries
JavaBean
Property File
Additional

Application Object /
Session Bean (EJB)

Business Object /
Session Bean (EJB) /
Entity Bean (EJB)

JAR File

Data
Design Components
Persistent Object
Data File
Additional

Data Object
Schema / DDL

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

71

5.1.2.1 Analysis
Note: This section does not contain guidance on how to develop an analysis model. This
is a software engineering discipline and skill that should be held by the user of this guide.
In specifying an application, the architect and/or designer needs to define the
specification level components he/she needs to meet the requirements levied on the
application.

For GCSS-AF, reference analysis level component types have been identified for consideration
in specifying the application. These component types, by all means not the only ones allowed,
are categorized in Figure 19: Mission Application - Analysis Model View relative to both the N-
Tier model and the MVC pattern.

Figure 19: Mission Application - Analysis Model View

During analysis the mission application analyst(s) / systems engineer(s) would identify and
specify the abstracted components for which a design will be developed. At minimum, it is
expected that components would be specified to address:

• Presentation requirements for user interface in terms of display and interaction “pages.”
• Business requirements in the terms of components encapsulating business rules and logic

(Business Logic Components), BODs that the application produces, and Business
Service Components (BSC) that encapsulate one or more Business Service Requests
(BSR). The BSR is the action that the sender application wants the receiver application
to perform. BSRs are the OAGIS list of common actions for business applications to
perform to accomplish application integration.

Note that the BSC may or may not also be specified as the “application” controller.

• During analysis, business data is generally not specified per se as business objects

encapsulate business data. However, if queries will be made against the business data, a
logical data model at the entity level is created.

MVC –
Controller

MVC - Model

MVC - View

DO
Data

Model

Data
Components

Web
Application

e-Form
Page

Cntlr.

Presentation
Components

Page

Application

Portlet
Data

Access

BLC
Intf.

Cmpnt.

Business
Components

BSC BOD
Appl.
Cntlr.

Data
Files

MVC –
Controller

MVC - Model

MVC - View

DO
Data

Model

Data
Components

DODO
Data

Model
Data

Model

Data
Components

Web
Application

e-Forme-Form
Page

Cntlr.
Page

Cntlr.

Presentation
Components

PagePage

Application

PortletPortlet
Data

Access
Data

Access

BLCBLC
Intf.

Cmpnt.
Intf.

Cmpnt.

Business
Components

BSCBSC BODBOD
Appl.
Cntlr.
Appl.
Cntlr.

Data
Files
Data
Files

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

72

o Additionally files, including log files, while not illustrated in Figure 19: Mission
Application - Analysis Model View should be identified during analysis to
include identification of the information being accessed or logged.

• During analysis, specification of interactions and/or use of the Integration Framework

(IF) with respect to the application should generally be limited to identifying which (top-
level) services of the IF will be used. That is, does it require security services,
transaction services, naming services, etc?

Analysis modeling should be focused on the application, interactions between
components of the application, and interactions with other applications. Interactions with
and through the IF do not generally appear until design.

Security Considerations
During analysis, the level and type of security (if any) should be identified for each specified
component.

This should include the following relative to each component:

• What information exchanges between components need to be encrypted?
• Does the requestor (or sender) of information need to be authenticated?
• Does the requestor (or sender) of information need to be authorized?

o What are the roles that can access the component and with what privileges?
o Who needs to be authorized, the initiating user or the requesting component?
o What user presentation information needs to be restricted based on user role?

• What, if any, audit information needs to be captured?

Refer to Section 6 Securing the Application for security guidance details.

Application-to-Application Interactions
Business interfaces (primarily BODs) external to the application need to be identified to include:

• Associated interaction scenarios identifying types of communication (point-to-point,
publish/subscribe, multi-cast),

• Integration scenarios (required or expected sequence of BOD/message exchanges), and
• Information exchanges and/or business object updates for which transactional integrity is

required.

5.1.2.1.1 Analysis Component Type Descriptions
This section provides a brief identification of the reference component types that might be
specified for an application. Note that these should not be viewed as an all- inclusive list of types.

Presentation Component Types

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

73

Page – An individual graphical user interface screen presented to a user. On the World
Wide Web, a page is a file notated with the Hypertext Markup Language (HTML). Note
that in the analysis stage a Web page consisting of multiple frames could be identified as
either a single page or a main page including other pages. How this is specified could be
a function of whether individual frame content can be used elsewhere, the level of
security placed on the frame content, etc.

e-Form - (electronic form) A computer program version of a paper form. E-forms can
include associated programming to automatically format, calculate, look up, and validate
information for the user. E-forms allow more focus on the business process or underlying
problem for which they are designed (for example, expense reporting, purchasing, or time
reporting). They can understand the roles and responsibilities of the different participants
of the process and, in turn, automate routing and much of the decision making necessary
to process the form.

Portlet – A small portal application designed to display specific content or a user
interface to a Web application. A Portlet displays the content blocks on a portal Web
page. Each Portlet has a predefined role. For example, retrieve the latest news bulletin,
run a specific search engine, view stock quotes, serve HTML files, display a calendar,
etc.

Page Controller – Describes the page navigation’s specified for the application’s user
interface. It can be thought of as providing the state transition diagrams for the
application’s user interface screens (pages / forms). Note that it is left to the designer as
to how to implement this navigation. It can be purely through static HTML hard links or
through JSP/Servlet generated HTML.

Data Access – This is included under presentation components only for those cases
where a user interface might directly access an existing database for simple display of
information. This would generally be accessed via a portal. Note that access to data
managed by modernized and wrapped applications would be through the business
components of those applications, not a data access component in the presentation layer.

Business Component Types

Application Controller (AC) – Provides control, routing, and sequenc ing of requests for
services of the application, generally as requested by an end-user. It would typically
invoke Business Service Components and/or Business Objects as required. For
processing of messages/BODs, it is left to the designer as to whether the application
controller will actually “receive” a BOD itself and then dispatch the BOD to the
appropriate BSC or whether the BSC would directly “receive” the BOD without any
application controller involvement. Also note that for less complex applications the BSC
and Application Controller may be combined into one component.

Business Service Component (BSC) - Typically a coarse-grained component that
provides the public interfaces for a business process. A Business Service Component

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

74

describes the business process, and is comprised of (invokes) business objects. Examples
of Business Service Components include ordering, in-processing/out-processing,
inventory, etc. The OAGIS BSR is defined in the context of a BSC; that is a BSC needs
to be defined to provide the processing associated with one or more BSRs to receive and
process a related BOD. For analysis, it is up to the analyst to decide whether a single
BSC is specified to “handle” all BSRs or to specify multiple BSCs with each BSC
handling one or more BSRs.

Business Logic Component (BLC) - Relative to analysis, a finer-grained component
than the BSC. It implements the business logic for a major process step, a business entity,
or business event. Examples include customer, bill of material, end of fiscal year, etc.
Business logic components also encapsulate business data and provide the access
mechanism to the business data.

In general, a business logic component should represent an independent business object
that has independent identity and lifecycle, and is referenced by multiple business objects
and/or clients. Dependent objects are objects that only have meaning within the context
of another business object. They typically represent fairly fine-grained business concepts,
like an address, phone number or order item. For example, an address has little meaning
when it is not associated with a business object like Person or Organization. It depends on
the context of the business object to give it meaning. Such an object can be thought of as
a wrapper for related data. Dependent objects are typically not modeled during analysis.

Business Object Document (BOD) – The model used to communicate a request from
the originating mission application to the destination mission application. Each Business
Object Document includes supporting details to enable the destination mission
application to accomplish the action. As defined by the Open Applications Group (OAG),
a BOD is the application interoperability model for specific Business Area message
definitions. A BOD provides a standard message format, independent of mechanism for
sending and receiving the message. The BODs Control Area includes one of the OAG
defined Business Service Request (BSR) that defines the action the sender wants the
receiver to perform. The BODs Business Data Area includes a definition of the data,
making it a self-describing message format, and one or more occurrences of the data
values.

Interface Component (IC) - Provides (GCSS-AF style) services to access Legacy
systems, external systems, or COTS/GOTS/NDI products that do not provide GCSS-AF
style APIs. The interface component acts as a front-end to these systems to provide
required interface or service to the system. The interface component’s services are
implemented using GCSS-AF style APIs. Essentially they are a specialized case of a
Business Service Component or an Application Controller.

Data Component Types
In an object-oriented analysis based development, data components typically are not specified.
Pertinent (analysis level) data is specified as attributes of business logic components. However,
there may be cases where specific data objects or schemas are important enough during the

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

75

analysis to be specified. This might be the case for interface components or “wrapped” Legacy
applications where the existing database (schema) is the “contractual” interface with the Legacy
application. If queries will be required against the data, a logical data model at the entity level is
created.

Data Object (DO) – Manages the essential state of the business logic component
including the persistent storage of this data. While generally not specified during
analysis, a data object could be specified when it is critical that the mapping of a business
logic component’s data to a database schema be understood early on in the development.

Data Model - A model of the data entities that are used in a business or other context and
the identification of the relationships among these data entities. Typically an entity-
relationship model is developed to capture this information. While a data model is
generally not specified during analysis for data associated with business objects, a data
model would be captured or developed when queries or interactions with or encapsulation
of a Legacy database are required.

Data Files – (primarily flat files) Typically used to maintain log information. There also
may be cases (most likely Legacy application interface) where an external interface might
require data to be sent to or received from another application in a flat file. For analysis,
the file specification should at minimum identify the data items to be maintained in the
file.

5.1.2.2 Design
Note: This section does not contain guidance on how to transform an analysis model into
a design. This is a software engineering discipline and skill that should be held by the
user of this guide.

In designing an application, the designer/developer needs to define the design level (technical)
components he/she needs to implement the analysis model (components) of the application.
For GCSS-AF, reference design level component types have been identified for consideration in
designing the application. These component types are categorized in Figure 20: Mission
Application - Design Model View relative to the N-Tier model.

Figure 20: Mission Application - Design Model View

Enterprise JavaBeansCORBA Managed Objects

DO DBSchema
/ DDL

Data
Components

Web
Application

Application

HTML JSPServlet

Presentation
Components

Config.
Data Applet

Home/
FactoryAO SBBO

Business
Components

EBConfig.
Data ClassJava

Bean
Data
File

Java
Bean

Enterprise JavaBeansCORBA Managed Objects

DODO DBDBSchema
/ DDL

Schema
/ DDL

Data
Components

Web
Application

Application

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

76

During design the mission application designer(s) would identify and define the technical
components that are to be implemented to satisfy the analysis model and associated
requirements. The components identified at this stage should identify design level components
that are in fact separately installable, deployable components. They meet the GCSS-AF
definition of a component as stated in the GCSS-AF Application Developers Guide:

“A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently, is self-contained, and is sufficiently specified to be useable by third
parties.”

It is intended that the components defined at the design level go down only to a level to define
real component interactions and to which all functionality and required data can be allocated.
Details below this are generally the province of implementation. At minimum, it is expected that
components would be designed for:

• Analysis model presentation components.

• Analysis model business logic components. As such this would include:

o Application controller(s),
o BSCs for handling all the BSRs (BODs) provided by the application. In design,

how the BSRs will be packaged shall be defined. That is, if a single BSC is used
to implement all BSRs, than only one should be designed. If the BSRs are to be
allocated out to separate BSCs, the design shall specifically represent this as
separate BSCs. Where an appropriate BSC (BSR) has previously been developed
and available for reuse, the design should clearly reference the component.

o BOD classes should be designed if new or referenced if previously developed
and available for reuse.

o Business objects that provide the design for the business logic component. This
could range from a single design level business object to decomposition into
many business objects. This is a design decision left to the developer. However,
the intent during design is to keep the design at the level of the component
definition.

• During design, data objects for each business object should be developed to include

allocation to specific backend data stores (RDBMS, messages, etc.).
o As such, the databases required for business data persistence should also be

defined along with the schema for these databases to support the business data.
o The designer also needs to determine whether container managed persistence will

be used (strongly recommended) or whether the business object will handle its
own persistence (discouraged).

o Files, including log files, should be identified during design to include data
format of the information being accessed or logged. The method of access should
also be identified.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

77

• Components needed to support messaging requirements to send and receive BODs (or
other messages). This includes:

o Message listeners for the application.
o Message containers for sending messages. (E.g. in WebSphere, a MQSeries

Application Adapter based component for a specific message/BOD.)
• In design, the interactions with the Integration Framework and the use of it are initially

identified. This includes the specific methods of a service, how and where a service is
used, etc. This should not be interpreted to the extreme. For example, a designer should
not try to show how an EJB container implements a transaction if the component
required the EJB to be transactional.

• Information that needs to be defined to support configuration and reuse of the application

components such as URLs, application/component name, information specific to the
domain/locale/use that would map the application to a specific database instance,
namespace, etc. Hard coding of such information should never be used.

Security Considerations
During design, the level and type of security (if any) should be identified for each designed
component. Essentially what follows is a flow down from analysis components to design
components.

The following should be included relative to each component:

• What information exchanges between components need to be encrypted?
• Does the requestor (or sender) of information need to be authenticated?
• Does the requestor (or sender) of information need to be authorized?

o What are the roles that can access the component methods and with what
privileges?

o Who needs to be authorized, the initiating user or the requesting component?
o What user presentation information needs to be restricted based on user role?

• To what files will audit information be logged and how will it be processed?

Refer to Section 6 Securing the Application for security guidance details.

5.1.2.2.1 Design Component Type Descriptions
This section provides a brief identification of the reference component types that might be part of
and application design. It is these components that provide the top level of implementation of the
specified application and should be directly derived from the analysis components.

Presentation Component Types

Hypertext Markup Language (HTML) – A markup language for hypertext documents
on the Internet. HTML enables the embedding of images, sounds, video streams, form
fields, references to other objects with URLs and basic text formatting.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

78

Servlet - The Java platform technology of choice for extending and enhancing Web
servers. Servlets provide a component-based, platform-independent method for building
Web-based applications. And unlike proprietary server extension mechanisms, Servlets
are server- and platform-independent. Servlets have access to the entire family of Java
APIs, including the JDBCTM API to access enterprise databases. Servlets can also access
a library of HTTP-specific calls.

JavaServer Pages (JSP) – Technology uses XML-like tags and Scriptlets written in the
Java programming language to encapsulate the logic that generates the content for the
page. The application logic can reside in server-based resources (such as JavaBeansTM)
that the page accesses with these tags and Scriptlets. Any and all formatting (HTML or
XML) tags are passed directly back to the response page. JavaServer Pages technology
separates the user interface from content generation enabling designers to change the
overall page layout without altering the underlying dynamic content.

Applet – A small program that can be sent along with a Web page to a user. Java Applets
can perform interactive animations, immediate calculations, or other simple tasks without
having to send a user request back to the server. Due to security reasons, Applet use is
discouraged. If used, the use of signed Applets is required. Another reason for
discouraging the use of Applets is that browser capabilities to support Applets are not
consistent across vendors and may result in execution problems on the client.

JavaBean – A component (bean) specialized Java class that can be added to an
application development project and then manipulated by the Java IDE. A bean provides
special hooks that allow a visual Java development tool to examine and customize the
contents and behavior of the bean without requiring access to the source code. Multiple
beans can be combined and interrelated to build Java Applets or applications or to create
new, more comprehensive, or specialized JavaBeans components. JavaBeans can also be
passed between presentation components or between presentation components and
business components.

Configuration Data – Information that needs to be defined to support configuration and
re-use of the application components such as URLs, application/component name,
information specific to the domain/locale/use that would map the application to a specific
database instance, namespace, etc.

Business Component Types

CORBA Managed Object (CMO)– Loosely identified here as a CORBA business
object that operates within the context of a container of an application server that
provides automatic access to needed object services such as life cycle, persistence,
transaction service, etc. All interactions with clients or CORBA managed objects are
performed through the CORBA managed object. (Note that while the term Managed
Object is borrowed from IBM WebSphere Enterprise Edition terminology, it can be used
generically to identify any non-EJB CORBA components running in any vendor’s

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

79

application server.) A CORBA managed object can be the specialization of any of the
following component types.

Business Object (BO) – A CORBA object that implements the business logic for a major
process step, a business entity, or business event. Examples include customer, bill of
material, end of fiscal year, etc. Business objects also encapsulate business data (via data
objects) and provide the access mechanism to the business data. In general, a business
object should represent an independent business object that has independent identity and
lifecycle, and is referenced by multiple business objects and/or clients. (Has similarity to
an EJB entity bean.)

Application Object (AO) – A CORBA object that (might) implements the control,
sequence, and transaction logic for access to business objects. As such it would provide
the client access to business objects and provide any required business object access and
update sequencing and transaction scope. (Has similarity to an EJB session bean.)

Home– Acts as both a factory and a collection for CORBA managed objects. A home
provides methods to create, remove, and obtain a reference to a CORBA managed object
instance. In addition, the home includes methods for finding existing CORBA managed
object instances within the home. (Has similarity to an EJB home.)

JavaBean – Described in the Presentation Components Section above. JavaBeans can
also be passed between business components or between business components and
presentation components.

Enterprise JavaBeans (EJB) - The Enterprise JavaBeans component model logically
extends the JavaBeans component model to support server components. Server
components are reusable, prepackaged pieces of application functionality that are
designed to run in an application server. They can be combined with other components to
create customized application systems. Server components are similar to development
components, but they are generally larger grained and more complete than development
components. Enterprise JavaBeans components (enterprise beans) cannot be manipulated
by a visual Java IDE in the same way that JavaBeans components can. Instead, they can
be assembled and customized at deployment time using tools provided by an EJB-
compliant Java application server. Two types of EJBs are specified.

Session Bean (SB) - Used to implement a business object that holds client-specific
business logic. The state of such a business object reflects its interaction with a particular
client and is not intended for general access. Therefore, a session bean typically executes
on behalf of a single client and cannot be shared among multiple clients. A session bean
is a logical extension of the client program that runs on the server and contains
information specific to the client. In contrast to entity beans, session beans do not directly
represent shared data in the database, although they can access and update such data. The
state of a session object is non-persistent and need not be written to the database. A
session bean is intended to be Stateful. However, the Enterprise JavaBeans specification

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

80

allows stateless session beans as a way to provide server-side behavior that doesn't
maintain any specific state.

Entity Bean (EB)- Represents an object view of business data stored in persistent storage
or an existing application. The bean provides an object wrapper around the data to
simplify the task of accessing and manipulating it. This object interface lends itself to
software reuse. For example, an entity bean representing user account information can be
used by order management, user personalization, and marketing in a uniform way. An
entity bean allows shared access from multiple clients and can live past the duration of
client's session with the server.

Home – Provides methods to create, remove, or obtain a handle to an enterprise bean
instance. In addition, the home interface of an entity bean provides methods for finding
existing entity bean instances within the home.

Class - A template definition of the methods and variables of a particular kind of object.
Most design elements, other than helper classes identified during design, can be expected
to be other than “pure” classes (of a class library). One major exception to this is the
BOD class.

Configuration Data – See description above under Presentation Component Types.

Data Component Types

Data Object (DO)– Manages the essential state of the business object including the
persistent storage of this data. Generally at least one data object would be specified to
map a business object’s data to database entities and/or attributes. Data objects are only
applicable to managed objects such as the EJB entity beans or CORBA managed object.

Schema / DDL – An outline or a plan that describes the tables, records, and the
relationships existing in the view. The overall design of the database is called the
database schema. A database schema includes such information as:

o Characteristics of data items such as entities and attributes.
o Logical structure and relationship among those data items.
o Format for storage representation.
o Integrity parameters such as authorization and backup policies.

At the design level of database abstraction all the database entities, attributes, and the
relationships among them are included. One conceptual view represents the entire
database. It describes all the records and relationships included in the conceptual view
and, therefore, in the database. This schema also contains the method of deriving the
objects in the conceptual view from the objects in the internal view.

The description of data at this level is in a format independent of its physical
representation. It also includes features that specify the checks to retain data consistency

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

81

and integrity. Data Definition Language is generally used to capture the schema; although
if a data model is employed it can be used to generate the DDL.

Database – The physical database in which data objects are stored or persisted. It is a
design decision as to how many databases would be required to maintain the data for an
application. Where an application may access an existing database, that database should
be included by reference in the design.

Data Files – (primarily flat files) Typically used to maintain log information. There also
may be cases (most likely Legacy application interface) where designs might require data
to be sent to or received from another application in a flat file. Data structure and formats
for flat file content is defined during design.

5.1.2.2.2 Analysis to Design Component Type Mapping
This section provides a mapping of analysis component types to design component types. That
is, the type(s) of design components are generally used to provide a design for an analysis
component type is identified. These mappings are provided as guidelines; the specific design
component type(s) used is a function of the analysis component requirements, the software
language used, the distributed component model selected (e.g. J2EE, CORBA), the skill and
preferences of the designer, etc. Table 7: Presentation - Analysis Component Type to Design
Component Type Mapping, Table 8: Business Logic - Analysis Component Type to Design
Component Type Mapping, and Table 9: Data - Analysis Component Type to Design
Component Type Mapping identify the possible design component types that might be used to
provide a design for an analysis component type. Note that italicized design components are
those that are the least likely to be defined during design.

Table 7: Presentation - Analysis Component Type to Design Component Type Mapping

Analysis Component Design Component Use Comments / Notes
HTML Generally for static content
Servlet Primarily for dynamic content
JSP For dynamic content

Applet
For interactive animations, immediate calculations, or other
simple client local tasks. Discouraged due to security issues.

Page

JavaBean Reusable component processing, information passing
HTML Generally for static content
Servlet Primarily for dynamic content
JSP For dynamic content

Applet
For interactive animations, immediate calculations, or other
simple client local tasks. Discouraged due to security issues.

Form

JavaBean Reusable component processing, information passing

Portlet HTML Dependent upon portal product support; static gadget display.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

82

Servlet
Dependent upon portal product support; dynamic gadget
display and access to other services and applications.

JSP
Dependent upon portal product support; dynamic gadget
display.

JavaBean Reusable component processing, information passing
Servlet Provide access to external databases.

Data Access
JavaBean Data Access Bean

Servlet
Typical and preferred use to implement page controller;
provides most flexibility and capabilities.

JSP Can be used for more simple control requirements.
Page Controller

JavaBean Reusable component processing, information passing

Table 8: Business Logic - Analysis Component Type to Design Component Type Mapping

Analysis Component Design Component Use Comments / Notes
Application Object For CORBA, non-J2EE implementations
Session Bean For J2EE implementations
Home Namespace location importance
Message Listener Asynchronous trigger of BSC on message arrival.
Queue To receive incoming BODs for BSR

Business Service Component
(BSC)

Queue Manager To manage defined queue
Business Object For CORBA, non-J2EE implementations
Session Bean For J2EE implementations
Entity Bean For J2EE implementations
JavaBean Reusable component processing, information passing

Class
Generally not expected during design except for helper classes
identified during design.

Home Namespace location importance
Data Object For CORBA, non-J2EE implementations
Schema / DDL For defined Data Objects

Business Logic Component
(BLC)

Database For defined schemas

Class
Classes to build and parse BODs and to populate and extract
BOD information. Business Object Document

(BOD)
DTD Document Type Definition for the XML BOD.

Interface Component (IC) See BSC (above)

An IC is a essentially a specialized BSC or Application
Controller. However, JavaBeans may be very apropos as either
an Access Bean or for translation between the GCSS-AF
"front-end" and the Legacy "back-end".

Application Object For CORBA, non-J2EE implementations
Session Bean For J2EE implementations Application Controller
JavaBean Reusable component processing, information passing

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

83

Table 9: Data - Analysis Component Type to Design Component Type Mapping

Analysis Component Design Component Use Comments / Notes
Data Object For defined data objects and expanded as required

Data Object
For defined data objects

Data Model
Schema / DDL The data model from analysis would be of an existing database

or for query support.

Data File Data File
Extends the identification of the file content to include
structure and format.

Note: Data component in analysis are generally not required or produced.

5.1.2.3 Implementation
Note: This section does not contain guidance on how to expand a design into an
implementation. This is a software engineering discipline and skill that should be held by
the user of this guide.

In implementing an application, the designer/developer expands the design level. Essentially
implementation results in decomposition of the design components into additional components
of various types. For example, a session bean from design could result in an implementation
consisting of the session bean itself, plus a JavaBean, multiple classes (in a class library), and a
property file. No guide to what may result can be provided; the specific implementation is a
function of the design component itself, the software language used, the distributed component
model selected (e.g. J2EE, CORBA), the skill and preferences of the designer, etc.

For GCSS-AF, reference implementation level component types have been identified for
consideration in designing the application. As implementation is an extension of design, the
component types are in fact the same component types identified for design and categorized in
Figure 20: Mission Application - Design Model View plus some minor additions.

5.1.2.3.1 Implementation Component Type Descriptions
As previously stated, the component types are the same component types identified for design
and plus some minor additions.

These additional component types are:

Presentation Component Types

Property File – A file that would typically contain configuration data such as that
described for the configuration data component in design. Data such as URLs,
application/component name, database name, information specific to the
domain/locale/use, etc. could be retrieved from the property file(s) to allow an
application/component to automatically configure itself or its connections.

JAR File – (Java ARchive) is a platform-independent file format that aggregates many
files into one. A JAR file is a convenient way of packaging together a set of class files to

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

84

simplify configuration management and distribution of software. Multiple Java
components (.class files, images and sounds) can be bundled in a JAR file. The JAR
format also supports compression, which reduces the file size. In addition, individual
entries in a JAR file can be digitally sign to authenticate their origin.

JAR files are especially valuable for presentation purposes; they were originally
developed in support of Applets. Multiple Java Applets and their requisite components
(.class files, images and sounds) can be bundled in a JAR file and subsequently
downloaded to a browser in a single HTTP transaction, greatly improving the download
speed.

Business Component Types

Property File – See description above under Presentation Component Types.

JAR File – See description above under Presentation Component Types. With respect to
Business Component Types, JAR files are used only for maintaining classes.

Data Component Types

Persistent Object (PO) - encapsulates the embedded SQL statements needed to insert,
update, delete, and retrieve the essential state to and from the data store. The Persistent
Object contains the same attributes as the Data Object; so the mapping from Data Object
to Persistent Object is very straightforward. By delegating the (SQL) communication
with the data store to Persistent Object, the Data Object ‘s own code can be kept
understandable and clean. It also allows the same Data Object to be used with different
back-end data stores, as a different Persistent Object can be provided for different data
stores.

Note: While this Persistent Object definition is borrowed from IBM WebSphere
Enterprise Edition terminology, it provides a desirable mechanism to isolate the actual
data store from the Data Object independent of the actual application server or execution
environment employed.

5.1.2.3.2 Design Component to Implementation Component Mapping
This section provides a mapping of design component types to implementation component types.
Unlike the analysis to design mapping, implementation is essentially an expansion of the design
components into additional components of various type; the actual types are a function of the
design component requirements, its complexity, the software language used, the distributed
component model selected (e.g. J2EE, CORBA), the skill and preferences of the developer, etc.

Table 10: Design Component Type to Unique Implementation Component Type Mapping
identifies only the design to implementation component type mappings for those implementation
component types not already identified for design.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

85

Table 10: Design Component Type to Unique Implementation Component Type Mapping

Design Component
Implementation
Component Use Comments / Notes

Presentation Component Type Mappi ngs

Configuration Data Property File
Configuration data generally held in one or more property files
for the application or component

Classes, JavaBeans, Applets Jar File May be packaged in JAR file(s)

Business Component Type Mappings

Configuration Data Property File
Configuration data generally held in one or more property files
for the application or component

Classes, JavaBeans Jar File May be packaged in JAR file(s)
Data Component Type Mappings

Data Object
In implementation, more than one data object may result from a
design data object. Data Object

Persistent Object One per implemented data object

5.1.2.4 Component Integration Within An Application
The application developer needs to keep in mind that the ultimate goal is that applications can be
created by integrating multiple (OAGIS-type coarse grain) business components. As such,
components at the level of the OAGIS-coarse grain business components (i.e. the GCSS-AF
Business Service Component) that comprise an application should follow the same guidelines as
described for Application Integration. Refer to 5.1.3 Application Integration.

For integration all other identified components, GCSS-AF places little restrictions. The
integration employed will be a function of the nature of the components, the software language
used, the distributed component model selected (e.g. J2EE, CORBA), the skill and preferences of
the designer, etc.

It is suggested that the integration methods chosen maximize the use of the application server
capabilities provided by the Integration Framework. Some examples of this include:

• Using containers to manage persistence instead of integration “by hand” using
SQL/ODBC/JDBC directly.

• Configuring containers to manage transactions instead of “coding in” begins, commits,

and rollbacks, using container managed.

• Using container managed messaging instead of “coding to” the messaging interfaces

themselves.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

86

5.1.3 Application Integration
Application integration is one that results in an interaction or information exchange between two
or more applications. GCSS-AF has specified that the Open Applications Group (OAG)
approach be employed for this. Refer to http://www.openapplications.org/. This basically means
that application-to-application interface is accomplished through Business Object Documents
(BOD) typically sent using the messaging paradigm.

Application integration also requires that applications be able to locate the application (for either
delivery of messages or application method invocation) appropriate to the domain for which the
application is instantiated. To support this application namespace and naming conventions are
provided.

Note: GCSS-AF has specified that the shared data not be employed for the integration of
applications. That is, a database should not be employed as an information exchange
mechanism between applications. There are numerous reasons for this not the least of,
which is the tight coupling this imposes between applications. Shared data poses a
significant maintenance issue when one of the applications needs to change its database
design or even replace it as all other interfacing applications also need to be changed.

5.1.3.1 Business Service Requests
A Business Service Requests (BSR) shall be implemented by the application to process a BOD.
As previously identified, The BSR is provided in a Business Service Component. Essentially the
BSR accomplishes the necessary BOD processing. Depending upon the processing required, this
might be accomplished by the BSR itself or by invoking other business components.

5.1.3.2 Business Object Document Delivery Mechanisms
There are two supported mechanisms for delivery of messages/BODs. The prime, recommended
approach is through asynchronous messaging where the BOD is sent to a queue and then
delivered to the target application(s). The other mechanism is by direct method invocation. The
latter should only be used when it is absolutely necessary that the target application update its
data inside the same transaction as the sender. These are briefly described in the following
sections.

It should be noted that in the GCSS-AF enterprise there is no assurance as to where applications
will be hosted or that they will remain on the same host or even within the same processing
center throughout the applications lifetime. This is especially true given the Air Force
Expeditionary Forces concept and associated deployment of applications. This is one of the
drivers to specifying messaging as the prime mechanism for application integration.

5.1.3.2.1 Messaging (Asynchronous)
This is the specified mechanism for delivery of BODs for application integration. The
Integration Framework supports point-to-point, multicast, and publish/subscribe means of
message delivery. The current IF provided publish/subscribe capability is based on topics
identified when publishing a message or subscribing to a message. It does not encompass content

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

87

based routing. While messaging is asynchronous communications, it supports assured delivery of
a message. This means that once queued, the developer can be assured that the message will
ultimately be delivered to the receiving application(s).

As messaging is asynchronous with applications de-coupled from one another through message
queues, support for two-phase commit of data updates across applications is limited to inclusion
of message queuing or de-queuing within a transaction context. While this may seem inadequate
to developers steeped in earlier technology and approaches based on the two-phase commit
paradigm, the availability of assured delivery with messaging has been proven to address all but
the most critical data updates.

The design and implementation of the messaging associated with an application require the
definition, design, and implementation of:

• Message listeners to trigger the Business Service Components

• Queues for the messages

• Queue managers and channels to manage movement of messages in and out of the queues

• Publish/subscribe brokers for published messages.

This might include use of existing ones or creation of new ones. Note that this requires an
understanding of the environment in which the application will be deployed. Refer to
Section 4.2.2 Messaging for details on messaging within the Integration Framework.

5.1.3.2.2 Method Invocation (Synchronous)
In order to support the situation when it is absolutely necessary that the target application of a
message (BOD) update its data inside the same transaction as the sender, the Integration
Framework also allows a message to be passed as a parameter in a method call. As such this
provides the ability to encompass the data updates of both sender and receiver to be within the
scope of the same transaction. While this is allowed, it should only be employed when absolutely
necessary as its use:

• Results in a tight coupling of applications that in a distributed component environment is
undesirable

• Requires that all underlying transaction services (CORBA OTS) either be branded or

from the same vendor to assure interoperability of transaction services

• Can be unreliable over wide-area networks.

Refer to Section 5.4

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

88

5.1.3.3 Application Namespace and Naming Conventions
The Air Force enterprise is extremely large and diverse with many different site/locales or
organizations requiring (application) services and information that shall be either individually or
separately managed. This means that for some applications, the same application may need to be
deployed (or instantiated) for each site/locale or organization if the information managed by the
information needs to be separately managed. It may also be required that, depending upon the
application and managed information, the applications be deployed at different processing
centers (or even sites/locales). As such, it is essential that a means be identified to allow:

• Users to connect to the (deployed) application appropriate for the user’s role,
organization, or (site/locale) assignment

• Applications to send messages to the (deployed) application appropriate for the domain,

organization, or site/locale for which it is processing information

• Applications invoke methods of the (deployed) application appropriate for the domain,
organization, or site/locale for which it is processing information.

To accomplish this it is important that naming services, directory services, and messaging items
(queues, queue managers) employ conventions to allow routing of user requests, messages, and
invocations to the application appropriate to application and requested service. Figure 21: IF
Naming Conventions Relative to Application Interaction illustrates where these conventions
might be used.

The conventions of note and illustrated in Figure 21: IF Naming Conventions Relative to
Application Interaction include:

Application Namespace
The namespace implemented within the Naming Services for CORBA and EJB
components/objects provides for deployment of the same application type in support of different
sites/locales or organization of the Air Force Enterprise. This is critical to forming properly
scoped searches within the naming service(s). The IF has defined the following convention to be
employed by the IF.

-- Product Standard Structure
----- Server Group or Server to represents site/locale or organization
-------- Applications

The key level (above) relative to naming conventions is the Server Group or Server. Its name,
where applicable, shall represent either the site/locale or organization and the application. The
convention selected is to preface the key word Servers (for Server Group) or Server with
LocationApplication. Refer to Section 5.5.2.8 Naming Conventions and Services for details.
Note that this convention also takes into account the need to be able to provide workload
management and fault tolerance and/or recovery as well.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

89

A location name/value pair, initially passed in the HTTP Header, is provided to allow dynamic
determination of the appropriate Server Group or Server.

Note: While this convention was defined with the WebSphere Application Server in
mind, it should be, in some form, usable across different vendor application servers.
While server/server groups may not be the appropriate entity for other application
servers, a distinction in the name service that can be employed to implement site/locale or
organization should be available.

Security Services Application Object Namespace
Maintains the information required to make (explicit) access control checks to application
(modules, interfaces, and methods). As with the Application Namespace, this namespace also
provides for deployment of the same application type in support of different sites/locales or
organization of the Air Force Enterprise. The IF has laid out this namespace as identified in
Section 5.3.2.2.6 Access Control.

A qualifier name/value pair, initially passed in the HTTP Header, is provided to allow dynamic
determination of the appropriate node in the Application Object Namespace. As the current IF
requires these access checks to be explicit, it is critical that the application making the access
check, ensure that the Application Object Namespace node for which the access check is made
corresponds to the (Server Group or Server) node in the Application Namespace in which the
application is “running”.

Messaging Namespace (Conventions)
The naming convention employed for messaging provides for unique message queue names to
route to the correct deployed application for cases where the same application type is multiply
deployed in support of different sites/locales or organization of the Air Force Enterprise.

The name, where applicable, shall represent either the site/locale or organization and the
application. The convention selected is to preface the type of queue with Application.Location
or in the case of publish/subscribe to provide unique streams, Location.Default.Stream (for each
required location or organization) to which applications can publish or subscribe to messages.
Refer to Section 5.5.2.8 Naming Conventions and Services for details of the naming
conventions.

A location name/value pair, initially passed in the HTTP Header, is provided to allow dynamic
determination of the appropriate message queue or stream.

HTTP Header Location and Qualifier Name/Value Pairs
The IF Menu System was specifically designed to ensure that the appropriate location and
qualifiers were passed in the HTTP Header where the user selected a link to an application
supporting a specific location or organization. This menu system, along with the supporting
Directory Service maintained information is detailed in Section 6.3.1 Planning for Access
Control

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

90

Note: When other than the IF Menu System is utilized to access applications requiring
location (and qualifier) distinction, it is up to the user interface (approach) to provide the location
and qualifier information in the HTTP Header. As such, the AF Portal approach shall also
comply with this requirement; otherwise the issues addressed by the IF Namespace and Naming
Conventions shall be re-addressed. Hard coding of information and “creation” of separate
applications for each unique location or organization should not be considered an option.

Figure 21: IF Naming Conventions Relative to Application Interaction

The correlation’s between these various namespaces and conventions is illustrated by example in
Figure 22: Namespace and Naming Conventions Mapping Example. In the example, the
locations configured are enterprise and base-x and the qualifiers are /GCSS-AFAPPS/ILS
/enterprise and GCSS-AFAPPS/ILS /base-x.

Web
Seal

Web
Server

User
Browser

Directory
Services

Location,
Qualifier

If application is “location” independent, find
“application object” in name space using server -
scope with :

ApplicationServers

if application is “location” dependent then:

LocationApplicationServers

Servlets

Know their
Application

Session
InfoStruct
Location,
Qualifier

Find objects it invokes in name space using
server-scope with:

LocationApplicationServers

Application
Object or

Session
Bean

Business
Object or

Entity/Session
Bean

Business
Object or

Entity/Session
Bean

Command
Line

Location,
Qualifier

initiation

Trigger
Monitor

Know their
Application

Sends/receives messages to/from other applications
using queues named:

Application.Location .BSR.Inbound

Publish/Subscribe to Topics named

Application.BSR
to stream named:

IF.Location .Default.Stream

Find other objects it invokes in
name space using server -scope
with:

LocationApplicationServers

Initiation Queue named:

Application.Location.Initiation.Queue

http hdr
User

Identity

Via IF
Menu

System
generated

URL.

Web
Seal

Web
Server

User
Browser

Directory
Services

Location,
Qualifier

If application is “location” independent, find
“application object” in name space using server -
scope with :

ApplicationServers

if application is “location” dependent then:

LocationApplicationServers

Servlets

Know their
Application

ServletsServlets

Know their
Application

Session
InfoStruct
Location,
Qualifier

Find objects it invokes in name space using
server-scope with:

LocationApplicationServers

Application
Object or

Session
Bean

Application
Object or

Session
Bean

Business
Object or

Entity/Session
Bean

Business
Object or

Entity/Session
Bean

Business
Object or

Entity/Session
Bean

Business
Object or

Entity/Session
Bean

Command
Line

Location,
Qualifier

initiationinitiation

Trigger
Monitor

Know their
Application

Trigger
Monitor

Know their
Application

Sends/receives messages to/from other applications
using queues named:

Application.Location .BSR.Inbound

Publish/Subscribe to Topics named

Application.BSR
to stream named:

IF.Location .Default.Stream

Find other objects it invokes in
name space using server -scope
with:

LocationApplicationServers

Initiation Queue named:

Application.Location.Initiation.Queue

http hdr
User

Identity

Via IF
Menu

System
generated

URL.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

91

Figure 22: Namespace and Naming Conventions Mapping Example

PDCSession
Servers

(Server Group)

PDCSession
Server-1
(Server)

PDCSession
Server-n
(Server)

PDCSession
App

(application)

enterprise
PDCServers
(Server Group)

enterprise
PDCServer-1

(Server)

enterprise
PDCServer-n

(Server)

PDCApp
(application)

PDCSession

(managed object)

PDCAO

(managed object)

PartsData
Collection

(managed object)

Parts

(managed object)

base-x
PDCServers
(Server Group)

base-x
PDCServer-1

(Server)

base-x
PDCServer-n

(Server)

PDCApp
(application)

PDCAO

(managed object)

PartsData
Collection

(managed object)

Parts

(managed object)

Locates PDCAO in
server group using
location in
sessionInfoStruct (e.g.
enterprise, base-x)

/GCSS-
AFAPPS
(app. root)

/other

(domain)

/ILS

(domain)

/enterprise

(location)

/base-1

(location)

/base-x

(location)

/PDCSession
App

(application)

/PDCApp

(application)

/PDCSession
App

(application)

/PDC App

(application)

Resource Namespace (Security – Protection)

Application Namespace
(Execution / Activation)

Invoking servlet knows only one deployed
PDCSessionApp per processing center

PDC.Enterprise.GetListItem.Inbound
PDC.Enterprise.SyncInventory.Inbound

PDC.Enterprise.Initiation.Queue

c
c
c

PDC.Base-x.ListItem.Reply.Inbound
PDC. Base-x.Initiation.Queue

PDC. Base-x.SyncInvent.Receiver
PDC. Base-x.UpdateInventory.Inbound

c
c
c
c

PDC.Base-x.GetListItem.Inbound c

Messaging Namespace (Conventions)

A later
version of the
IF will
include
message
queues in the
Resource
Namespace.

PDCSession
Servers

(Server Group)

PDCSession
Server-1
(Server)

PDCSession
Server-n
(Server)

PDCSession
App

(application)

enterprise
PDCServers
(Server Group)

enterprise
PDCServer-1

(Server)

enterprise
PDCServer-n

(Server)

PDCApp
(application)

PDCSession

(managed object)

PDCAO

(managed object)

PartsData
Collection

(managed object)

Parts

(managed object)

base-x
PDCServers
(Server Group)

base-x
PDCServer-1

(Server)

base-x
PDCServer-n

(Server)

PDCApp
(application)

PDCAO

(managed object)

PartsData
Collection

(managed object)

Parts

(managed object)

Locates PDCAO in
server group using
location in
sessionInfoStruct (e.g.
enterprise, base-x)

/GCSS-
AFAPPS
(app. root)

/other

(domain)

/ILS

(domain)

/enterprise

(location)

/base-1

(location)

/base-x

(location)

/PDCSession
App

(application)

/PDCApp

(application)

/PDCSession
App

(application)

/PDC App

(application)

Resource Namespace (Security – Protection)

Application Namespace
(Execution / Activation)

Invoking servlet knows only one deployed
PDCSessionApp per processing center

PDC.Enterprise.GetListItem.Inbound
PDC.Enterprise.SyncInventory.Inbound

PDC.Enterprise.Initiation.Queue

c
c
c

PDC.Enterprise.GetListItem.Inbound PDC.Enterprise.GetListItem.Inbound
PDC.Enterprise.SyncInventory.Inbound PDC.Enterprise.SyncInventory.Inbound

PDC.Enterprise.Initiation.Queue PDC.Enterprise.Initiation.Queue

c
c
c

PDC.Base-x.ListItem.Reply.Inbound
PDC. Base-x.Initiation.Queue

PDC. Base-x.SyncInvent.Receiver
PDC. Base-x.UpdateInventory.Inbound

c
c
c
c

PDC.Base-x.GetListItem.Inbound c
PDC.Base-x.ListItem.Reply.Inbound

PDC. Base-x.Initiation.Queue
PDC. Base-x.SyncInvent.Receiver

PDC. Base-x.UpdateInventory.Inbound

c
c
c
c

PDC.Base-x.GetListItem.Inbound c
PDC.Base-x.ListItem.Reply.Inbound PDC.Base-x.ListItem.Reply.Inbound

PDC. Base-x.Initiation.Queue PDC. Base-x.Initiation.Queue
PDC. Base-x.SyncInvent.Receiver PDC. Base-x.SyncInvent.Receiver

PDC. Base-x.UpdateInventory.Inbound PDC. Base-x.UpdateInventory.Inbound

c
c
c
c

PDC.Base-x.GetListItem.Inbound PDC.Base-x.GetListItem.Inbound c

Messaging Namespace (Conventions)

A later
version of the
IF will
include
message
queues in the
Resource
Namespace.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

92

5.1.3.3.1 “Routing” Requirements Example
The following example (implemented by the IF test components and corresponding lab
configuration) is provided to illustrate the need and use of the “routing” capabilities provided by
the IF. This example, illustrated in Figure 23: IF Routing Relative to Application Interaction,
consists of the following elements:

• An imaginary enterprise consisting of three sites: Base-1, Base-3, and a Headquarters.
There are also two geographic regions defined. Region-1 includes Base -1 and Base -3
and Region-2 includes the Headquarters.

• Seven applications of three service categories; the service categories represent an

enterprise wide service, a regional service, and a site-specific service. The applications
are:

o Parts Data Collection (PDC) that maintains total identity of all parts and available
quantities at a site. There are four deployed PDC applications (each with its own
database); one for each site of the imaginary enterprise and one maintaining the
total identity of all parts in the imaginary enterprise inventory.

o A regional pseudo-Supply application through which parts can be ordered. There
are two deployed pseudo-Supply applications (each with its own database); one
for each region of the imaginary enterprise.

o An enterprise-wide Requisitioning application through which all parts can be
ordered.

• A user at a specific base requests a service of an application (Requisitioning) serving the

whole enterprise. This request is made to the deployed application for that base. Refer to
User Role Routing: Base Level in Figure 23: IF Routing Relative to Application
Interaction.

The GCSS-AF IF provides a menu system that returns a menu to the user at login with
URLs that point to applications specific to the users role and site/locale. Refer to Section
6.3.1 Planning for Access Control for details.

• The Requisitioning application in this example needs to interact with the deployed PDC

application associated with the user’s base and the deployed pseudo-Supply application
for the region in which the base is located. Refer to Message Routing: Region Level and
Message Routing: Base Level in Figure 23: IF Routing Relative to Application
Interaction.

Note: The GCSS-AF IF provides services for applications to determine the user’s role
and site/locale. Refer to Section 5.3.2 Service Use for details. It also provides
conventions by which message queues and topics/streams are named for sending or
publishing of messages (BODs). Refer to Section 4.2.2 Messaging for details. Figure 21:
IF Naming Conventions Relative to Application Interaction provides a quick view of
these conventions and where they might be used.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

93

• The deployed PDC application and the deployed pseudo-Supply application need to send

a response to the enterprise Requisitioning application that sent them the original
message.

Note: The GCSS-AF IF provides conventions for routing this response; it simply
specifies that the originating sender identify the appropriate queue name as the response
queue. Refer to Section 4.2.2 Messaging for details.

Figure 23: IF Routing Relative to Application Interaction

Not illustrated by the example is the use of namespace in the allocation and deployment of
applications in the directory servers. The GCSS-AF IF also identifies a convention for the
structure and use of namespace in the naming service(s) employed for placing EJB and CORBA
components.

5.1.4 Application Security Responsibilities
The Integration Framework is required to provide end-to-end protection of GCSS-AF user-to-
application, user-to-data, application-to-application, and application-to-data interactions. And it
is required to do so in a consistent manner providing the ability to selectively configure (or use)
only the level needed in order to minimize the performance impacts that result from the use of
security services and features.

The following, as annotated in Figure 24: Application Security Integration Points and
Considerations, describe at a top- level where application of security is specified along with the

DECC-D DECC-D

EPD
Interface

FTD’ed
File

Base 1

Base 3

HQ

Supply
Clerk

Supply
Clerk

Supply
Clerk

PDC
base-1

PDC
base-3

PDC
HQ

pseudo-
Supply

region_2

Requisi-
tioning

PDC
Enterprise

Message Routing;
Base Level

User Role Routing;
Base Level

pseudo-
Supply

region_1

Message Routing;
Region Level

HTML - http
(parts to order)

BOD - MQ send/recv
(part to order)

BOD - MQ send/recv
(qty parts)

DECC-D DECC-DDECC-D DECC-D

EPD
Interface

FTD’ed
File

Base 1Base 1

Base 3Base 3

HQHQ

Supply
Clerk

Supply
Clerk

Supply
Clerk

PDC
base-1

PDC
base-3

PDC
HQ

pseudo-
Supply

region_2

Requisi-
tioning

PDC
Enterprise

Message Routing;
Base Level

User Role Routing;
Base Level

pseudo-
Supply

region_1

Message Routing;
Region Level

HTML - http
(parts to order)

BOD - MQ send/recv
(part to order)

BOD - MQ send/recv
(qty parts)

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

94

nature of the security application. For these descriptions IF Security Services are generically
identified and not the underlying COTS products and LMSI-O developed services. For detailed
descriptions of security relative to application development using the Integration Framework,
including the HTTP Header and SessionInfoStruct mentioned below, refer to Section 6
Securing the Application.

Figure 24: Application Security Integration Points and Considerations

1. User ID / Password, Certificate – For GCSS-AF, all users are required to login either

using a userID/password or using a DoD PKI certificate. The login to GCSS-AF is
provided through IF Security Services. Note that through the current Integration
Framework release, only userID/password is supported. To support a single-sign-on,
application user interfaces (including Portlets) and application components should, for all
access checks (authorizations), make use of the security information passed in the HTTP
Header or the IF provided SessionInfoStruct.

2. Authenticated User – The IF Security Services provides for authentication of the user,
verifying the user is identified in the IF Security Services Directory. Note that this is
essentially a configuration effort and not a programming effort.

3. All External Communications Encrypted – all communications are required to be

encrypted outside of the protected enclaves provided by the processing centers. This
includes not only Web (HTTPS) traffic but also messaging traffic and access to databases
external to a requesting processing center. Encryption is accomplished through the use of

DECC-D DECC-D

EPD
Interface

FTD’ed
File

Base 1

Base 3

HQ

Supply
Clerk

Supply
Clerk

Supply
Clerk

PDC
base-1

PDC
base-3

PDC
HQ

pseudo-
Supply

region_2

Requisi-
tioning

PDC
Enterprise

6. Internal Comm.
Optionally Encrypted

2. Authenticated
User

pseudo-
Supply
region_1

5. Messages Optionally, Authorized,
Authenticated, Encrypted

HTML - https
(parts to order)

BOD - MQ send/ recv
(part to order)

BOD - MQ send/ recv
(qty parts)

4. Authorized
User

1. User ID / Password,
Certificate

3. All External Communications
Encrypted

7. Fine Grained
Access Control

DECC-D DECC-D

EPD
Interface

FTD’ed
File

Base 1Base 1

Base 3Base 3

HQHQ

Supply
Clerk

Supply
Clerk

Supply
Clerk

PDC
base-1

PDC
base-3

PDC
HQ

pseudo-
Supply

region_2

Requisi-
tioning

PDC
Enterprise

6. Internal Comm.
Optionally Encrypted

2. Authenticated
User

pseudo-
Supply
region_1

5. Messages Optionally, Authorized,
Authenticated, Encrypted

HTML - https
(parts to order)

BOD - MQ send/ recv
(part to order)

BOD - MQ send/ recv
(qty parts)

4. Authorized
User

1. User ID / Password,
Certificate

3. All External Communications
Encrypted

7. Fine Grained
Access Control

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

95

HTTPS, VPNs for messaging, and ORACLE ASO for database access. Note that these
are essentially configuration efforts and not programming efforts.

4. Authorized User – While only one access check is illustrated, in reality each component

that makes up the application may make a separate access check. As an example, IF
Security Services may first make an Access check to a user interface component. Then a
Business Component invoked by the user interface component may make its own access
check. In this example, the IF Security Services makes the initial access check based
entirely on Security configuration data (e.g. Access Control Lists) without any
programming requirement on the application developer. The second check, for the
current IF, requires a programmatic check on the part of the Business Component using
the information passed to it in the IF provided SessionInfoStruct. Note the need for this
latter check as a programmatic check has been identified for eventual elimination by a
more complete implementation of the CORBA Security Services.

5. Messages Optionally Authorized, Authenticated, Encrypted – The current IF release

employs the same security mechanisms as used by DISA for their (MQSeries) messaging
security. Authorization is not provided by these mechanisms. The available encryption
and authentication entails the configuration of a VPN (as required) and a DISA
developed MQSeries channel security exit to provide encryption and authentication for
messages sent between processing centers. Accomplishing this requires a configuration
effort and not a programming effort.

Note Future Capability: A future release of the IF plans the incorporation of
enhanced messaging security that provides for access control to message queues,
the ability to digitally sign messages, and the ability to individually encrypt
messages. This capability will be tightly integrated with the current IF Security
Services, utilizing the same underlying directory services and ACL repositories.

6. Internal Communications Optionally Encrypted – GCSS-AF Security Policy does not

require encryption within a protected enclave. As such, the application of encryption
within a protected enclave should only be used when absolutely necessary as encryption
imposes significant performance impacts. Establishing encryption (SSL) is a
configuration effort and not a programming effort.

7. Fine Grained Access Control – Fine Grained Access Control (FGAC) as used here is

the ability to individually protect individual attributes or objects managed by an
application. Currently the IF does not provide unique services to implement. These
services have been identified as a need for a later IF release. In the interim, capabilities of
the database management systems provided, programmatic checks, and coarser-grained
policy director checks are available for programmatic implementation.

As can be seen, the IF approach to security is to minimize the application of security through
programming and maximize it through configuration.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

96

5.1.5 Application and Integration Framework Integration Points
This section is intended to provide a combination overview and summary of the integration
points between an application and the Integration Framework. Some of these points have
previously been discussed as they pertain specifically to an application developer’s responsibility
while others have not been discussed, as they are more relevant to configuration, deployment,
and/or administration of either the application or the Integration Framework itself. Figure 25:
Integration Framework Interface and Configuration Integration Points illustrates these
integration points. The components/blocks depicted in the figure are described in the following
paragraphs.

Local Director(s)
Local Director represents the external network interface into the GCSS-AF enterprise. From a
developer standpoint, this is nothing more than the HTTP/HTTPS input from or output to a
client.

WebSeal (Proxies)
Provide user login, user authentication into GCSS-AF, establishes and maintains the (web) users
session, and provides (user) access control to web resources. Just as important is that it
establishes the user credential with which all “downstream” user authorization and access checks
will be made.

Security Servers
Represent all the other security servers required to provide authorization, authentication, and
security administration. It also maintains associated repository information such as user profiles,
application profiles, GCSS-AF (application) menu information, and access control lists.

Web Servers
Provide the processing of http requests and serves HTML. It also includes plug- ins to (or for)
Servlet engines to process JSPs and Servlets.

Servlet Engines
Provide for the processing of server-side presentation layer services through execution of JSPs
and Servlets.

Application Servers
Provide for the processing of business layer services through execution of business logic
components and associated messaging.

(Federated) Naming Service
Provides the directory services in which all GCSS-AF component “locations” can be found. The
application server products provide this directory service(s). However if required, it is a
development or deployment responsibility for any naming services federation or “registering” a
component in multiple naming services.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

97

Messaging Backbone
The underlying MQSeries messaging product through which all business components
interchange Business Object Documents.

These descriptions are provided to better place in context the Integration Point identification and
descriptions that follow. This information can also serve to identify the integration points that
shall be addressed when considering replacing IF COTS products or adding alternative COTS
products for specific functionality such as an Application Server.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

98

Figure 25: Integration Framework Interface and Configuration Integration Points

Italicized Indicates Future
Capability

Configuration Point

Interface Point

Legend

e.g. Logistics Area

Web Servers

All Areas

Web Seal Proxies

All Areas

Security Servers

Local
Director(s)

GCSS-AF
Users

Messaging Backbone

D. Applications and Methods Must Be Identified in Security Servers

Post IF 2.1

E. Message Queues Identified in Security Servers

G. HTML Allocated Per IF Directory Structure

K. IF Servlet use as Base Servlet Class;
(creates SessionInfoStruct, baseNameQualifier)

5. SessionInfoStruct, baseNameQualifier

H. BOD DTDs Located in IF DTD Repository

L. Naming Conventions

(F
ed
er
ate
d)
Na
mi
ng
Se
rvi
ce

e.g. Logistics Area

Servlet Engines

e.g. Logistics Area

Application Servers

3. CosNaming,
JNDI

N. DISA MQ Security Exits & VPN M. Naming Conventions
for Messaging

O. Publish/Subscribe Broker Topology

1. Login, Session ID
Provided by Web Seal

C. Application Users Must Be Identified and Assigned Roles in Security Servers

B. Web Accessible Resources Must Be Identified in Security Servers

F. Roles and Access Control Lists Defined in Security Servers

P. All Boxes Configured Using GCSS-AF
(STIG-based) Lock Down Guides

https

http

iiop

tcp/ip

https

A.Web Seal Junctions
Configured to Know
About Web Servers

Note: service
only. Physically
located on an
application
server.

I. JSPs, Servlets Allocated Per IF Directory Structure

J. GCSS-AF Menu Servlet

4. Acquire User and Application Context Information

2. HTTP Header Information

6. CORBASec using PD’s aznAPI

9. AMI or Message Application Adaptor, Trigger Monitor

10. PD for Messaging

8. Routing Information

7. Explicit Authorization Check using aznAPIQ. (Can be)
SSL

Connections

L. Naming Conventions

Italicized Indicates Future
Capability

Configuration Point

Interface Point

Legend

Italicized Indicates Future
Capability

Configuration Point

Interface Point

Legend

e.g. Logistics Area

Web Servers

e.g. Logistics Area

Web Servers

All Areas

Web Seal Proxies

All Areas

Web Seal Proxies

All Areas

Security Servers

All Areas

Security Servers

Local
Director(s)

GCSS-AF
Users

Messaging Backbone

D. Applications and Methods Must Be Identified in Security Servers

Post IF 2.1

E. Message Queues Identified in Security Servers

G. HTML Allocated Per IF Directory Structure

K. IF Servlet use as Base Servlet Class;
(creates SessionInfoStruct, baseNameQualifier)

5. SessionInfoStruct, baseNameQualifier

H. BOD DTDs Located in IF DTD Repository

L. Naming Conventions

(F
ed
er
ate
d)
Na
mi
ng
Se
rvi
ce

e.g. Logistics Area

Servlet Engines

e.g. Logistics Area

Servlet Engines

e.g. Logistics Area

Application Servers

e.g. Logistics Area

Application Servers

3. CosNaming,
JNDI

N. DISA MQ Security Exits & VPN M. Naming Conventions
for Messaging

O. Publish/Subscribe Broker Topology

1. Login, Session ID
Provided by Web Seal

C. Application Users Must Be Identified and Assigned Roles in Security Servers

B. Web Accessible Resources Must Be Identified in Security Servers

F. Roles and Access Control Lists Defined in Security Servers

P. All Boxes Configured Using GCSS-AF
(STIG-based) Lock Down Guides

https

http

iiop

tcp/ip

https

A.Web Seal Junctions
Configured to Know
About Web Servers

Note: service
only. Physically
located on an
application
server.

I. JSPs, Servlets Allocated Per IF Directory Structure

J. GCSS-AF Menu Servlet

4. Acquire User and Application Context Information

2. HTTP Header Information

6. CORBASec using PD’s aznAPI

9. AMI or Message Application Adaptor, Trigger Monitor

10. PD for Messaging

8. Routing Information

7. Explicit Authorization Check using aznAPIQ. (Can be)
SSL

Connections

L. Naming Conventions

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

99

5.1.5.1 Interface Points
An Interface Point is defined as an integration point that actually implement an interface between
the application and Integration Framework components and/or services.

These Interface Points include:

1. Login, Session ID Provided by Web Seal - Web Seal being the IF Security Services
Web (http) entry into the GCSS-AF Enterprise provides the login and authentication of a
user to establish a “session” and user identification intended to be employed throughout
the user’s session.

There is no application development responsibility specifically associated with this.
(However, security information passed in the http header as a result of this login is
application development pertinent information that is discussed in a later item.)

Note that the IF currently provides for userID/password login; the use of
certificates/smart cards has been identified by USAF for a future IF capability. Refer to
Section 6 Securing the Application for further information.

2. HTTP Header Information - Includes the user credential created by the IF Security

Services (WebSeal) and the appropriate location and qualifiers (as available using the IF
Menu System). These are available for use by applications as described in section 5.1.3.3
Application Namespace and Naming Conventions. Servlets derived from the IF provided
IFServlet base class automatically obtains this information. Other Servlets can access this
information through the standard Java Servlet class specified services provided to access
http header information.

3. CosNaming, JNDI – CosNaming is to be accessed by application components to create

and/or locate components with which the component needs to interact. It is up to the
application/component to form the proper namespace node for the desired component.
The IF provides the location and qualifiers to assist in this as described in section 5.1.3.3
Application Namespace and Naming Conventions. Applications / components access
these naming services using CORBA CosNaming or the standard J2EE JNDI services.

4. Note Future Capability: Acquire User and Application Context Information –

Maintained in repositories for user profile information and application information
including information that identifies application associations. The later provides a means
by which configuration information can be employed to allow an application to
dynamically determine the identity of applications with which it needs to interface.
Applications / components access these repositories through LDAP.

5. SessionInfoStruct, baseNameQualifier – Available to applications to obtain user

information that can be used to tag data in a database, against which to make access
checks, and to form appropriate namespace searches or names. This assumes that the user

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

100

interface (controller) Servlet was derived from the IF provided IFServlet base class to
automatically build these structures. Refer to 5.1.3.3 Application Namespace and Naming
Conventions and 5.1.4 Application Security Responsibilities for further information
including pointers too more detailed information.

6. Note Future Capability: CORBASec using PD’s aznAPI – The means by which

implicit authorization can be configured for access to a component (methods). This is a
future capability; for the current IF, the explicit access check described below is required.

7. Explicit Authorization Check using aznAPI – is provided by the IF as both an interim

means of providing access checks for component methods and as a means for providing
application / components to make (programmatic) access checks on resources more fine
grained than a method. Applications / components can make these checks using the
aznAPI either using an IF provided or using the aznAPI directly. Configuration of
appropriate information in Security Service repositories is also required. Refer to Section
6 Securing the Application for further information.

8. Note Future Capability: Routing Information –Maintained in a repository for

application information including information that identifies application associations. The
later provides a means by which configuration information can be employed to allow an
application to dynamically determine the identity of applications outside of the same
location and/or organization with which it needs to interface. Note that this is in addition
to the information provided by the SessionInfoStruct, and baseNameQualifier that
provide the means to map to applications within the same location and/or organization.
Applications / components access this repository through LDAP.

9. AMI or Message Application Adapter, Trigger Monitor – provide the mechanisms by

which applications / components interface with IF Messaging Services. Note that this
includes the use of a Trigger Monitor also. Applications / components outside of the
application server use the AMI and access it through the AMI APIs. Applications /
components running in the application server build message components using the
Message Application Adapter to interact with IF Messaging Services. In addition, the IF
provides classes to allow applications / components to configure a message to be sent
using the publish/subscribe paradigm. A Trigger Monitor to activate a component of the
arrival of a message is provided for tailoring for specific use. Refer to Section 4.2.2
Messaging for further information.

10. Note Future Capability: PD for Messaging –Essentially an interceptor for MQSeries

APIs that provides the ability to individually encrypt messages, and provide access
checks to message queues, digitally sign messages. Applications / components access this
capability the same as if they were invoking MQSeries APIs. Since the IF provides APIs
and application adapters that perform the actual MQSeries API invocations, this should
be hidden from the application. As there may be other specific security APIs required to
be invoked prior to sending or receiving a message this is identified as an Interface Point
and not a Configuration Point. Use of PD for Messaging also requires information to be
configured in support of the capability.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

101

5.1.5.2 Configuration Point
A Configuration Point is defined as an integration point that requires information to be
“configured” in an Integration framework repository or requires configuration of IF employed
products to be configured/deployed in a particular fashion.

These Configuration Points include:

A. Web Seal Junctions Configured to Know About Web Servers -All Web Servers
“secured” by IF Security Services shall have junctions configured between the Web
Seals and the Web Servers. While not an application development concern per se, the
application analyst and/or “deployer” shall decide through which Web Servers the
application will be accessible. Refer to Section 6 Securing the Application for further
information.

B. Web Accessible Resources Shall Be Identified in Security Servers - All Web

accessible resources, for which security at the URL level is desired, needs to have that
URL configured in the IF Security repositories along with associated ACLs. Refer to
section Section 6 Securing the Application for further information.

C. Application Users Shall Be Identified and Assigned Roles in Security Servers -

All GCSS-AF users and the ir assigned roles shall be configured in the IF Security
repositories. Refer to Section 6 Securing the Application for further information.

D. Applications and Methods Shall Be Identified in Security Servers - All

components and their protected methods for which security is desired, needs to have
that component and its methods configured in the IF Security repositories along with
associated ACLs. Refer to Section 6 Securing the Application for further information.

E. Note Future Capability: Message Queues Identified in Security Servers - All
message queues, for which security is desired, needs to have that queue configured in the
IF Security repositories along with associated ACLs.

F. Roles and Access Control Lists Defined in Security Servers - All roles to which

users (or components) will be assigned need to be configured in the IF Security
repositories. All ACLs that will be placed on protected resources need to be
configured in the IF Security repositories. Refer to Section 6 Securing the Application
for further information.

G. HTML Allocated Per IF Directory Structure - HTML files should be allocated on

Web Servers following the directory structure identified by the IF. Refer to Section
4.3.2.1 User Interface Common Facilities for further information.

H. BOD DTDs Located in IF DTD Repository - All DTDs shall be allocated in the IF

DTD Repository provided by the IF in order for XML parsing services, as configured

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

102

for the IF, can find the DTD at the processing center where the parsing service is
invoked. Refer to Section 5.3.2.3.3 DTD Repository for further information.

I. JSPs, Servlets Allocated Per IF Directory Structure - JSPs and Servlets should be

allocated on Servlet Engines following the directory structure identified by the IF.
Refer to section Section 4.3.2.1 User Interface Common Facilities for further
information.

J. GCSS-AF Menu Servlet - Application information needs to be configured in the IF

Security repositories in order for the IF Menu System to be able to present the
application to an authorized user. Note that it is this configuration information that is
used to ensure that the Web Browser provides the correct location information when
an application is invoked. Refer to Section 6.3.1 Planning for Access Control for
further information.

K. IFServlet - This IF base Servlet class is provided to application developers to provide

the means to inherit the creation of the SessionInfoStruct and baseNameQualifier. In
addition, it also implements the currently required use of the servletLoginHelper to
automatically log (WAS-AE) Servlets into the (WAS-EE) application server. The
latter will not be required in a future release of the IF. Refer to Section 4.3.2.1.1.3
Servlet Engines for further information.

L. Naming Conventions - The IF specifies naming conventions in order to locate the

correct (deployed) application based on location, site, and/or organization. The
naming convention covers application/component names, message queue names,
naming service namespace structure, and security directory namespace structure.
Refer to section 5.1.3.3 Application Namespace and Naming Conventions for further
information.

M. Naming Conventions for Messaging - The IF specifies naming conventions in order

to locate the appropriate queue to send information to the correct application based on
location, site, and/or organization. The naming convention covers message queue
names, queue managers, and publish/subscribe topics and message stream. Refer to
section 5.1.3.3 Application Namespace and Naming Conventions for further
information.

N. DISA MQ Security Exits & VPN (IF 2.1) - Until the future incorporation of the

Policy Director for Messaging product (described in Interface Point 9 above),
messaging security is that currently implemented by DISA for their messaging
activities. This essential consists of configuring in the MQSeries channel security exit
developed by DISA, configuring in the assigned userID and password to the
operating system. In addition, if encryption of external message traffic is required, it
is required that a VPN be configured for the required message traffic. Refer to
Section 6 Securing the Application for further information.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

103

O. Publish/Subscribe Broker Topology - The IF has established a publish/subscribe

broker topology and related naming conventions for the GCSS-AF Enterprise. This
topology provides an enterprise broker and processing center brokers. In addition,
publish/subscribe streams are established on a location, site, and/or organization
basis. Applications employing publish/subscribe are expected to utilize this topology
and conventions. Refer to Sections 4.2.2 Messaging and 5.1.3.3 Application
Namespace and Naming Conventions for further information.

P. All Boxes Configured Using GCSS-AF (STIG-based) Lock Down Guides - As the

IF security solution encompasses not only the IF Security Services but also computer
and operating system configurations using the IF developed GCSS-AF Lock Down
Guides that are based on the DoD STIGs. It is required that these guides be applied to
all servers in order to meet security requirements. Refer to Section 6 Securing the
Application for further information.

Q. (Can be) SSL Connections - The IF provides the ability to protect most inter-box

connections using SSL. This is accomplished through configuration of the
connections for which protection is desired. (Note that USAF and DISA have
currently identified that connections within (firewall) protected enclaves do not
require protection. Refer to Section 6 Securing the Application for further
information.

5.1.6 Development Environment Notes
This section is intended to provide some general guidance relative to the development
environment an application developer shall put in place. This will be discussed in the context of
the reference development process discussed in section 5.1.2 Reference Application
Development Process and the security requirements and integration points discussed in sections
5.1.4 Application Security Responsibilities and 5.1.5 Application and Integration Framework
Integration Points.

Note: It is important to understand that GCSS-AF currently does not specify a specific
development methodology, process, or development toolset. Information that follows
should be viewed as reference information and is not mandated. While what follows may
have the appearance of a waterfall approach, it is assumed that a spiral development
process will most likely be employed with the development phases overlapping and
repeated.

5.1.6.1 Analysis Phase Development Environment Notes
Table 11: Analysis Phase Development Environment Items identifies the recommended
development environment items that an application developer should have in place for the
analysis phase of development. Note that later phases will include many of the same
development items and will reference this table for descriptions. Also, the prototype

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

104

development item description and details is deferred to the implementation discussion as tool
employed for prototype development tools can be expected to be some of the same tools
employed for actual development.

Table 11: Analysis Phase Development Environment Items

Notes Development
Environment Item

Current IF
Tested
Product(s)

As applicable: Development Process Item
 (from Figure 18: Reference Mission Application Development Process)

Requirements
Management DOORS

A requirement management tool is strongly recommended for maintaining,
tracking, status of requirements and how they are met. This needs to include
allocation to analysis components. While not required, use of DOORS would
allow better integration and merging of requirements across the enterprise.

Requirements allocated to each specified analysis Presentation, Business,
and Data component. Note that allocation can be at a higher level of
abstraction than the specific component; i.e. allocation can be to a (UML)
package that contains multiple components.

UML Modeling
Tool

Rational Rose,
SourceSafe

UML is the specified modeling language for GCSS-AF. GCSS-AF maintains
a Rational Rose UML model of the GCSS-AF enterprise. It is expected that
application developers will provide the required information and model to
allow new application developments to be merged into this enterprise model.
In addition, a configuration management capability needs to be provided for
the model. While not required, use of Rational Rose and SourceSafe would
allow better integration and merging of the UML models across the
enterprise.

All analysis Presentation, Business, and Data components are specified in
the UML model. GCSS-AF has specified a partitioning of business
models, analysis models, design models, and implementation models. The
analysis model is developed during this phase.

ERWIN

Data Modeling

Rational Rose

For those developments where significant queries directly to backend
databases are required, a data model should be developed. To a certain degree,
this model can be expressed using UML. However, for complex data models,
traditional data models should be developed.

For any required analysis Data component, an associated entity should be
found in the data model. This entity should also be represented in the
UML model.

Performance
Modeling

OPNET

Depending upon the particular application being developed, a degree of
performance modeling may be required during analysis. USAF has
standardized on the use of OPNET for performance modeling. In addition,
various performance models will be available for incorporation into an
application's model to represent parts of the system not specifically part of the
application being developed.

Prototype
Development
(Integrated
Development
Environment)

Refer to Table
14: Integrated
Development
Environment
Items

During analysis, it may be necessary to develop prototypes to validate
concepts or approaches. At minimum, an IDE should be available for this.
However, depending upon the scope of the prototype a full up IF environment
could be required. (For details refer to the Integrated Development
Environment notes in Table 14: Integrated Development Environment Items .)

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

105

Notes Development
Environment Item

Current IF
Tested
Product(s)

As applicable: Development Process Item
 (from Figure 18: Reference Mission Application Development Process)

Performance
Testing

WinRunner,
LoadRunner,
Sniffers

For prototypes for which performance data is required, test tools may be
required to exercise the prototype and to capture pertinent performance data.
USAF currently employs the WinRunner and LoadRunner test tools.

Documentation Microsoft Office
Documentation of all types is produced during analysis. This includes
document, spreadsheets, diagrams/graphics, etc. GCSS-AF has standardized
on the Microsoft Office product suite for this purpose.

Software
Development
Folders (SDF)

Windows File
System
Structured By
System Tree

GCSS-AF recommends that a system tree for the development be established
along with a directory structure based on the system tree. Development
artifacts are then to be allocated to nodes of the directory structure. GCSS_AF
has "standardized" on Microsoft Windows as the environment in which
development artifacts would be maintained.

5.1.6.2 Design Phase Development Environment Notes
Table 12: Design Phase Development Environment Items identifies the recommended
development environment items that an application developer should have in place for the design
phase of development. Note that for the most part, the development environment items are the
same as those required for the analysis phase.

Table 12: Design Phase Development Environment Items

Notes
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Items

(from Figure 18: Reference Mission Application Development Process)

Requirements
Management DOORS

During design, most of requirement management will consist of updates,
corrections, and allocations. Also refer to Analysis Phase notes in Table 11:
Analysis Phase Development Environment Items.

As a trace-ability between analysis components and design components is
recommended in the UML model, it is not required to provide additional
allocations to design components within DOORS.

UML Modeling
Tool

Rational Rose,
SourceSafe

During design, not only are the design model developed but the initial
identification of the components (captured in the UML component model is
developed. An early view of the deployment model may also be developed if
sufficient information is available. Also refer to Analysis Phase notes in
Table 11: Analysis Phase Development Environment Items .

All design Presentation, Business, and Data components are specified in
the UML model. GCSS-AF has specified a partitioning of business
models, analysis models, design models, and implementation models. The

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

106

Notes
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Items

(from Figure 18: Reference Mission Application Development Process)

design model is developed during this phase.

ERWIN

Data Modeling
Rational Rose

Refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items .

For any required design Data component, an associated entity should be
found in the data model. This entity should also be represented in the
UML model.

Performance
Modeling OPNET

Depending upon the particular application being developed, a degree of
performance modeling may be required during design to make trade offs in
approach. Also refer to Analysis Phase notes in Table 11: Analysis Phase
Development Environment Items .

Prototype
Development
(Integrated
Development
Environment)

Refer to Table
14: Integrated
Development
Environment
Items

During design, it is expected that prototypes will be developed to validate
approaches. At minimum, an IDE should be available for this. However,
depending upon the scope of the prototype a full up IF environment could be
required. (For details refer to the Integrated Development Environment notes
in Table 14: Integrated Development Environment Items .)

Performance
Testing

WinRunner,
LoadRunner,
Sniffers

Refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items .

Documentation Microsoft Office
Refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items .

Software
Development
Folders (SDF)

Windows File
System
Structured By
System Tree

Refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items .

5.1.6.3 Implementation Phase Development Environment Notes
Table 13: Implementation Phase Development Environment Items identifies the recommended
development environment items that an application developer should have in place for the
implementation phase of development. During this phase an Integrated Development
Environment (IDE) is the most critical to the successful implementation of an application. It also
poses the most significant impact to a developer that chooses to utilize a development
environment other than that tested and utilized by the Integration Framework. It is therefore
strongly recommended that if a different IDE is employed, the developer very early in the
development determine the approach for utilizing this (different) IDE relative integration, test,
and deployment into GCSS-AF (and the IF).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

107

Table 13: Implementation Phase Development Environment Items

Notes
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Items

(from Figure 18: Reference Mission Application Development Process)

Requirements
Management

DOORS

During implementation, very little requirement activity is expected. Most of
requirement management will consist of updates, corrections, and allocations.
Also refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items.

UML Modeling
Tool

Rational Rose,
SourceSafe

If an implementation UM L model is required the following applies.

Note Future Capability: For implementation, it is left to the developer to
decide on the course of implementing the design specified in the design
model portion of the UML model. Two main paths are available. 1. (If using
Rose) develop the initial implementation in the UML model and derive the
initial implementation (code) from the model and then use round trip
engineering for updating the implementation model. 2. Develop the
implementation using the IDE and extract the implementation model from the
code.

Also refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items .

ERWIN

Data Modeling

Rational Rose

If a data model is required the following applies.
A data model would be developed which identifies all entities, their
attributes, and relationships between entities. The DDL would then be
derived from the data model. Note that DDL can be extracted either from an
ERWIN data model or from the classes identified in Rose.

Also refer to Analysis Phase notes in Table 11: Analysis Phase Development
Environment Items .

Performance
Modeling

OPNET

During implementation or at minimum immediately following integration and
testing, an updated model of the application should be completed to validate
deployment requirements for the application. Also refer to Analysis Phase
notes in Table 11: Analysis Phase Development Environment Items .

Integrated
Development
Environment (IDE)

Refer to Table
14: Integrated
Development
Environment
Items

During implementation a full up IF environment would be required.
However, as implementation itself has various phases not all of the IDE may
be required until later in the implementation (such as final implementation)
when integration of components is underway. Table 14: Integrated
Development Environment Items presents this in more detail.

Software (CM)
Repositories PVCS

During implementation it is critical that software is developed under
configuration management. It is recommended that the software CM
repository be structured (including node names) in such a fashion as to allow
ease of correlation between the CM repository nodes and the SDF nodes.
While the IF currently uses PVCS, use of PVCS is not a recommendation, the
IF itself is considering a change to a different CM tool.

Testing

During implementation, testing at various levels will be necessary. This
encompasses unit tests, component tests, application tests, and system tests,
security tests, and performance tests. As with the IDE, not all of the IDE may
be required until later in the implementation (such as final implementation)
when integration of components is underway.

Documentation Microsoft Office
For Java based components, it is recommended that the code be annotated to
allow extraction of JavaDocs. Also refer to Analysis Phase notes in Table 11:
Analysis Phase Development Environment Items .

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

108

Notes
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Items

(from Figure 18: Reference Mission Application Development Process)

Software
Development
Folders (SDF)

Windows File
System
Structured By
System Tree

Note Future Capability: Also refer to Analysis Phase notes in Table 11:
Analysis Phase Development Environment Items .

Relative to application final implementation, it will typically be necessary to have a full-up
development and test environment in place (to include the IBM WAS EE). Final
implementation, as used here, means the developer’s integration and testing in a (near) full-up
functional system. Use of USAF development and staging labs for the developer’s final
integration and testing is an item that needs to be negotiated on an application-by-application
basis. The reason other venues were not explored is that there are just too many possible
development environments for which a process / approach could be defined.

Currently GCSS-AF does not address the use of a development environment other than the one
employed by the Integration Framework development. Should a contractor and/or development
organization decide on a different development environment, it currently is their responsibility to
determine how it will be employed and it’s use it in conjunction with the application deployment
into the GCSS-AF Enterprise.

Table 14: Integrated Development Environment Items identifies the recommended Integrated
Development Environment items that an application developer should have in place for the
implementation phase of development.

Table 14: Integrated Development Environment Items

Notes Integrated
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Implementation Items

(from Figure 18: Reference Mission Application Development Process)

Web Authoring

A Web authoring tool provides for ease of development of Web pages and
minimizes the level of programming skills the Web page developer requires.

Prototype Note: Should be expected to be required for prototype requiring
Web based user interfaces.

HTML, JSPs, Servlets, Applets, Image Files

Java Development
Environment

Visual Age for
Java

Should supply a complete Java development environment including testing of
units, JavaBeans, EJBs , and applications. Ideally supports deployment into
the application server environment.

Prototype Note: Should be expected to be required for prototypes developed
in Java.

EJBs, Homes, JavaBeans, Servlets, JSPs, Applets, ….

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

109

Notes Integrated
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Implementation Items

(from Figure 18: Reference Mission Application Development Process)

C++ Development
Environment

Visual Age
Libraries

Should supply a complete C++ development environment including testing of
units, CORBA components, and applications. Ideally supports deployment
into the application server environment.

Prototype Note: Should be expected to be required for prototypes developed
in C++ or if a complex Java prototype requires the IF supported application
server. (The IBM WebSphere EE requires the use of a C++ compiler).

C++/CORBA Components, ….

Libraries, .JAR files Not Applicable

Contain Integration Fra mework service and utility APIs for invocation by
application software.

Prototype Note: Depending upon the scope of the prototype may or may not
be provided.

C++/CORBA Components, EJBs, JavaBeans, Servlets, JSPs, Applets, ….

Application Server
Component
Development

Used to create CORBA Managed Components, configure EJBs for
deployment into the application server, map component data to databases,
provide services for container managed messaging, etc.

Prototype Note: Depending upon the scope of the prototype may or may not
be provided.

C++/CORBA Managed Components, EJBs, Homes, DOs, POs, ….

Text (based) Files
Word, Notepad,
WordPad, …

Used for text files that are not automatically generated by other IDE tools.

Prototype Note: Most likely will be required.

Property Files, DTD files, DDL files, ……

XML Development

Used for developing XML objects including DTD files. Provides tools to
parse, build, and analyze XML code.

Prototype Note: Only required if developing a prototype requiring XML
(BODs).

BODs

UML to
Components

Used to extract designs from UML and generate the “code templates” for the
modeled components. This includes the generation of IDL.

Prototype Note: Generally not required, but if a design is available for
extraction, it has utility.

EJBs, CORBA Managed Components, …….

Reverse
Engineering to
UML

Rational Rose

Used to extract a UML model from developed code.

Prototype Note: Would not be used for prototypes.

UML Implementation Model

UML to DDL Rational Rose
Used to extract DDL from UML defined classes.
Prototype Note: Generally not required, but if a design is available for

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

110

Notes Integrated
Development
Environment Item

IF Tested
Product(s) As applicable: Development Process Implementation Items

(from Figure 18: Reference Mission Application Development Process)

extraction, it has utility.

Schema/DDL for Data Objects (in RDBMS)

Database
Development and
Deployment

Oracle, DB2

Used to create, configure, and administer the relational databases. Includes
setting up replications, distribution, etc.

Prototype Note: Generally required assuming prototypes will include the need
to persist data.

Relational database

Messaging Utilities

Used to create required queues, queue mangers, channels, pub/sub brokers
and streams, etc. Also used for monitoring and administering the messaging
“system”.

Prototype Note: Only required for those prototypes utilizing messaging.

Application
(Component)
Deployment

WAS AE/EE
Systems
Management

Used to deploy the actual applications into the run time environment.

Prototype Note: Generally required assuming prototypes would be more
extensive than just developing inside of the Java or C++ development
environment. Currently the IF has tested only using WAS EE although for
some prototypes, AE can suffice. However, if (two-phase commit)
transactions are included, EE is required.

Executable (Deployed) Applications

Run Time
Environment

WAS AE, WAS
EE, Oracle,
DB2, PD, DNS,
….

This is the actual run-time environment into which applications are deployed.

Prototype Note: Generally required assuming prototypes would be more
extensive than just developing inside of the Java or C++ development
environment. Currently the IF has tested only using WAS EE although for
some prototypes, AE can suffice. However, if (two-phase commit)
transactions are included, EE is required.

Executable (Deployed) Applications

Table 15: Test Tool Categories identifies the recommended test tool categories for which an application developer
should have tools in place for the implementation phase of development.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

111

Table 15: Test Tool Categories

Notes
Test Tool
Categories

IF Tested
Product(s) As applicable: Development Process Implementation Items Tested

(from TBA)

Unit Testing
Visual Age for
Java, Visual
Age for C++

Java and C++ classes can be tested as individual units using these tools.
Prototype Note: Should be expected to be required for prototypes developed
in Java.

Java Classes, C++ Classes

Component Testing

Visual Age for
Java, Visual
Age for C++,
Oracle, DB2

Individual components can be tested using these tools. Multiple cooperating
components can be tested to a certain level as limitations such as 2-phase
commits exist.
Prototype Note: Should be expected to be required for prototypes.

C++/CORBA Components, EJBs, Homes, JavaBeans, Servlets, JSPs,
Applets, ….

Application /
Integration Testing

WAS AE, WAS
EE, Oracle,
DB2, PD, DNS,
….

WinRunner

Multiple cooperating components up to the complete application can be
tested. Multiple cooperating applications can also be tested. The WinRunner
tool allows test cases to be scripted for automated functional testing.
Prototype Note: Generally required assuming prototypes would be more
extensive than just developing inside of the Java or C++ development
environment. Currently the IF has tested only using WAS EE although for
some prototypes, AE can suffice. However, if (two-phase commit)
transactions are included, EE is required.

Executable (Deployed) Applications, C++/CORBA Components, EJBs,
Homes, JavaBeans, Servlets, JSPs, Applets, ….

Performance and
Stress Testing LoadRunner

Used to simulate multiple and simultaneous users. Allows scripting of
scenarios to support automation of peformance/stress tests.
Prototype Note: Only required if prototype is being developed with
performance concern.

Executable (Deployed) Applications, C++/CORBA Components, EJBs,
Homes, JavaBeans, Servlets, JSPs, Applets, …

Regression Testing
WinRunner,
LoadRunner

WinRunner provides for scripted functional tests while LoadRunner provides
for scripted stress testing.
Prototype Note: Only required if prototype will be repetitively exercised.

Executable (Deployed) Applications, C++/CORBA Components, EJBs,
Homes, JavaBeans, Servlets, JSPs, Applets, …

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

112

5.1.7 Test Component Descriptions
Throughout section 5 references are made to the Integration Framework test components as well
as citing as examples these same test components. These test components were developed both
as the means to test and exercise the Integration Framework and to provide examples to
developers of how to use the IF and its services. Figure 26: Test Components UML Analysis
Class Diagram identifies the test components specified and provided by the Integration
Framework. Note that this analysis model will be updated to identify all the applicable
components as defined in section 5.1.2.1 Analysis.

Figure 26: Test Components UML Analysis Class Diagram

The components identified in the diagram along with a brief description of the component
follow:

PartsDataCollection (PDC)
This component maintains a list of parts and available quantities. It provides a user interface by
which a user can add parts, delete parts, view parts information, and modify parts information. In
addition it provides Business Service Requests for adding parts (for bulk load) and for updating
inventory quantities as would be used for supplying parts for a part order.

EnterprisePartsDataWrapper

processInputFile()
buildShowItemBOD()
waitForInputFile()
confirmReceipt()
deleteInputFile()

pseudoSupplySystem

placeOrder()

Requisitioning

requisition
orderPage

getPartList()
addRequisition()
buildAddRequisitionBOD()
getRequisitionStatus()
selectPartToOrder()
saveStatus()
displayOrderPage()

place order with

BOD
messages

PartsDataCollection

partPersistentID : Array
criteriaMetPartsList : Array = null
authorization : SecLabel

constructor()
destruct()
addPart()
queryPart()
updatePart()
getPartList()
removePart()
constructor()
buildShowItemBOD()
addPartToTable()
reservePart()
loadParts()
displayAddPartPage()
displayUsePartPage()
selectPartToUse()

send new part to

gets parts list from

reserves part being ordered

part

authorization : SecLabel
partNSN : Array
partNumber : Array
partCAGE : Array
partDescription : String = null

constructor()
destruct()
setPartInfo()
getPartInfo()
meetSelectionCriteria()
CheckForCurrentTx()

contains

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

113

The PDC also can be configured as either an Enterprise level component or a Base level
component. As an enterprise level component it publishes all part additions, modifications, or
deletes to components that have subscribed for enterprise PDC changes. As a Base level
component it subscribes to enterprise PDC changes and synchronizes its information with the
enterprise PDC using the published information.

Part
This component contains the information about the part and provides the methods to set and get
the part information. This is what the PDC contains.

Enterprise Parts Data Wrapper (EPD)
This component provides an example of an interface (wrapper) to a Legacy system that utilizes a
flat file as its interface mechanism. The EPD monitors a file system directory for a file addition
(representative of a file FTP to this directory from a Legacy system). Files “sent” to this interface
component can contain many, many parts (information) that are sent to the enterprise PDC for
addition. BODs are sent to the PDC BSR for adding parts effectively performing a bulk load.
The EPD has no user interface.

Requisitioning Component
This component provides the means by which a user can order parts. A user interface provides a
means for a user to view a list of parts matching the users selection criteria. The user can then
select one of the displayed parts and place an order for the part along with a desired quantity.
The requisitioning component maintains a history of ordered parts, sends a message to the PDC
to “reserve” the desired quantity of parts for this order, and sends a message to the (pseudo)
Supply System to process the order.

Pseudo-Supply System
This component represents a Legacy supply system that will actually process part orders. This
component simply creates an order in a database.

Figure 27: Test Component UML Design Packages identifies the test component (UML) design
packages implemented and provided by the Integration Framework.. The test component UML
design models are located in the Integration Framework package of the top-level Test package of
the System Solutions Rose Model. Owing to the size of the test components design model, it is
not included in this developer’s guide.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

114

Figure 27: Test Component UML Design Packages

5.1.8 Additional IBM Reference Material

In addition to this guide, there are several very useful Guides and Redbooks produced by IBM
that provide descriptions of the development of enterprise applications in conjunction with IBM
WebSphere Enterprise Edition. These can be found through the IBM Websites at www.ibm.com
(Guides) and www.redbooks.ibm.com (Redbooks). Of note to implementations for the “Data
Layer” are the documents identified in the following list. While specific chapters and sections
relative to data layer components are relatively obvious in these documents, it is strongly
suggested that the user of this guide be familiar with the contents of these documents.

• WebSphere Application Server, Introduction to WebSphere Application Server,
Version 3.5, SC09-4430-01, Second Edition (June, 2000).

• IBM Component Broker Connector Overview, SG24-2022-02, Published on June-19-

1998 (Redbook)

• WebSphere Application Server Enterprise Edition Component Broker, Programming
Guide, Version 3.5, SC09-4442-01, Second Edition (August, 2000).

• WebSphere Application Server Enterprise Edition Component Broker, Advanced

Programming Guide, Version 3.5, SC09-4443-01, Second Edition (June, 2000).

• WebSphere Application Server, Writing Enterprise Java Beans in WebSphere,
Version 3.5, SC09-4431-02, Second Edition (June, 2000).

• WebSphere Application Server Enterprise Edition Component Broker, Procedural

Application Adaptor Development Guide, Version 3.5, SC09-4572-00, First Edition
(August, 2000).

• IBM WebSphere Application Server Enterprise Edition Component Broker 3.0: First
Steps, SG24-2033-03, Published on August-31-2000 (Redbook).

Presentation Related
Classes and Diagrams

PDC Releated Classes and
Diagrams

Legacy Wrapper Related
Classes and Diagrams

EPD Wrapper Related
Classes and Diagrams

Requisition Related
Classes and Diagrams

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

115

• WebSphere Application Server Enterprise Edition Component Broker, Application

Development Tools Guide, Version 3.5, SC09-4445-01, Second Edition (July, 2000).

• WebSphere Application Server Enterprise Edition Component Broker, System
Administration Guide, Version 3.5, SC09-4448-01, Second Edition (July, 2000).

• User-to-Business Patterns Using WebSphere Enterprise Edition: Patterns for e-

business Series, SG24-6151-00, Published on September-15-2000 (Redbook).

• WebSphere Application Server Enterprise Edition Component Broker, Getting
Started with Component Broker for Windows NT (or Solaris), Version 3.5, SC09-
4443-01, Second Edition (August, 2000).

• WebSphere Application Server Enterprise Edition Component Broker, Programming

Reference, Version 3.5, SC09-4446-01, Second Edition (July, 2000).

5.2 Presentation

5.2.1 Overview

The presentation layer components are responsible for providing the end user interface. The
preferred approach for the presentation to the user is to be Web Browser-based. While other
approaches are not precluded, there is no specific support provided by the Integration
Framework.

The presentation layer components are typically divided into two different elements. The part
that runs on the client workstation (the client-side tier) and the other that supports the requests
from the user that runs on the application/web server (the server-side tier). A Web browser
provides the client-side functionality, displaying HTML returned from a Web Server. The
server-side capabilities are provided through Servlets, Java Server Pages (JSPs), and HTML.

The topics covered in this section are:

• The use of Servlets - In particular the use of the Integration Framework provided
IFServlet base class will be discussed including where to get it, what services are
provided, and how to extend it for application use.

• The use of JSPs in providing a Graphical User Interface for the user using a web browser.

• The use of HTML in providing a browser independent interface for the user.

• The potential use of Applets in a web application solution.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

116

• Configuration items that are required in order to enable and use the Integration
Framework provided security services from within the presentation layer.

Throughout this section code snippets are used as examples that are taken from the test
components that have been developed to drive the Integration Framework for testing purposes.
For a complete understanding of the recommended use of these technologies, refer to the
PDCClientClasses and ReqClientClasses from the test components. These are the Servlets that
provide the server-side tier of the presentation layer for the "Parts Data Collection" and
"Requisitioning" test components respectively.

In addition to this guide, there are several very useful Redbooks produced by IBM that provide
descriptions of the development and use of Servlets and JSPs in conjunction with IBM
WebSphere Advanced Edition. These Redbooks can be found on the IBM Web site at
http://www.redbooks.ibm.com.

5.2.2 Service Use

5.2.2.1 Servlets

Servlets are a server-side alternative to the use of Java Applets. Java Applets are programs that
are downloaded and run in a Client JVM and referenced directly in Web pages. When a browser
loads a Web page that contains a reference to an Applet, the Applet is downloaded to the client
box and executed in the browser. As the Applets grow in size, the download times become
unacceptable. Another issue faced by Applets is compatibility. In order to run an Applet the
developer must have a compatible browser. Applets are also faced with the restrictions in terms
of what server-side resources are accessible. Additionally, Applets provide a security risk and,
based on the client location security policy, may not be passed through the security firewall thus
precluding their use.

These problems have identified the need for server-side Java. Servlets are an option for server-
side Java development that helps to solve the problems that are faced when using Applets.
Servlets are generic extensions to Java-enabled servers that are most commonly used to extend
Web Servers. They are dynamically loaded to handle requests from the Web Server. Servlets are
run inside a Java Virtual Machine(JVM) running on the server side and therefore do not depend
on browser compatibility.

Servlets can be used for any number of Web-related applications. The primary use for a Servlet
is to produce HTML that is to be returned to a client workstation containing the results of some
request from that client. The Servlet receives the request, uses the functions of the components
in the business logic layer to gather, process and return the results of the request. The data
returned is then formatted into an HTML document that is returned to the client browser.

The Servlet is the controller in the model-view-controller design pattern. Refer to Section
5.1.1.2 Model-View-Controller Design Pattern for the details of this design pattern. The Servlet
controls the workflow in terms of the order in which the business logic is invoked in order to
carry out the user’s request. It may be that only one Business Component is required to be called

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

117

in order to obtain the desired result but, it may also be the case that multiple calls to multiple
business components are required. In any event, the result obtained from any business logic
invocation is then used to populate the HTML request that is returned to the client's browser.

HTTP Servlets extend the Web server capabilities by creating a framework for providing request
and response services over the WEB. When a Client sends a request to the WEB server that
references a Servlet, the WEB server forwards the request information to an application server
and has the Servlet construct the client response.

Servlets help control the execution of the backend business logic since they have access to
backend components and construct the client response largely based on the capabilities and
information provided by these components. The number of Servlets that are required to support
an application would depend on the business components that makeup the application. It is
possible that there may be one Servlet for each business component. The Business Component
Servlet would receive parameters from the request that determine which operation(s) to invoke.
An alternative would be to provide a different Servlet for each operation of the Business
Component.

In the Integration Framework environment Servlets are deployed on an IBM WebSphere
Advanced Edition Application Server that may or may not reside on the same machine as the
Web Server. Placing the Application Server on a separate machine allows a single Web Server
to use the services of multiple Application Servers thus, providing a level of scalability, load
balancing, and fault tolerance. The physical location of the Servlets is determined by
configuration settings applied when installing an application to the Application Server.

Servlets provide two key roles in the Integration Framework. They must pass on user
authentication and authorization information and they must locate and call methods of distributed
components. The following sections describe how an application developer uses the IFServlet
and the Integration Framework naming service to implement these roles.

5.2.2.1.1 The IFServlet and Its Use

The Integration Framework provides a common base class from which to develop secure
Servlets that interface with EJB and/or CORBA components. The IFServlet is the base class
derived from the HTTPServlet, and is intended to be the only Servlet in the class hierarchy that
implements the abstract doPost and doGet methods of the HTTPServlet. This is done to ensure
that control will pass through the IFServlet, allowing common Integration Framework functions
to be performed. All application specific Servlets should extend the IFServlet base class.

Java Server Pages (JSPs) can interact with servlets at the lower levels in the hierarchy and as
long as the IFServlet methods are not overridden, they will be available throughout the hierarchy.
Adding additional function to the servlets lower in the hierarchy is accomplished through the use
of the abstract doPostService and doGetService methods. Figure 28: Example Servlet
Hierarchy provides an example of servlet hierarchies. Notice that the Servlets to the left of the
diagram support one application while the ones at the right support an entirely separate

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

118

application. Each makes use of the IFServlet and the capabilities that it provides for the
common functions required by all Servlets built on the Integration Framework.

Figure 28: Example Servlet Hierarchy

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

119

Figure 29: IFServlet Source View shows the methods that are provided by the IFServlet. The

IFServlet includes four abstract methods (indicated with a large capital “A” to the right of the
method) that must be implemented by Servlets that extend the IFServlet. These are:

• doGetService
• doPostService
• initializePropertyManager
• initializeServerConnection

Each of these abstract methods is discussed in detail in the following sections. All methods are
described in Appendix A.

IFServlet

PDCServlet

PDCAddUpdate
Servlet

PDCAdd
Servlet

PDCViewList
Servlet

PDCDelete
Servlet

PDCUpdate
Servlet

PDCPartQuery
Servlet

REQAdd
Servlet

REQPartQuery
Servlet

REQServlet

REQViewList
Servlet

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

120

Figure 29: IFServlet Source View

5.2.2.1.1.1 Use of doGetService - doPostService - abstract methods
The IFServlet processes security code common to all Servlets in the doGet and doPost methods.
This includes programmatically logging in to the WebSphere Enterprise Edition application
server and reading and processing the property file. These then call doGetService and
doPostService respectively. doGetService and doPostService are abstract methods that the
developer implements to provide any additional functionality and/or application specific
processing

The best way to illustrate the pattern of the intended use of the IFServlet abstract methods
doGetService and doPostService is through an example.

Figure 30: Add Part Control Flow Scenario shows the flow of control when a user from the client
browser adds a part in the Parts Data Collection test application provided with the Integration
Framework.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

121

The flow of control assumes that all the initial security actions have taken place. This means that
Local Director has established a connection with a WebSeal Proxy, and the WebSeal proxy has
authenticated the user.

Browser
1

WWW Server
2

IFServlet

3

5
Busines
Logic

Application
Server

PDCServlet
PDC

AddUpdate
Servlet

6 PDC
AddServlet

7 8

4

Figure 30: Add Part Control Flow Scenario

The following is a breakdown of the example above, Figure 30: Add Part Control Flow Scenario:

1. The Web Browser submits a request to add a new part to the parts data collection. The
browser sends the request to their local Web Proxy Server.

2. The request travels to the backend Web Server.

3. The Web Server passes the request to the doPost method of the requested Servlet. In this

case the target Servlet is the PDCAddServlet. Since that Servlet does not contain an
implementation for the doPost method control is passed up the hierarchy until an
implementation is found. This is how the IFServlet intercepts control so that the required
security operations can be performed.

4. The IFServlet programmatically logs in (authenticates) to the WebSphere Application Server

Enterprise Edition (WAS-EE), a.k.a. Component Broker (CB), via a ServletLoginHelper.
After this connection has been checked/established the doPostService method is called to
handle the users request. In this case the request is passed to the PDCServlet for handling.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

122

5. The doPostService of the PDCServlet is invoked to handle the addpart request from the

user. Again, there is no implementation provided for this abstract method in the IFServlet.
This allows the handling of the doPost requests to be handled at a lower level where actions
specific to the request can be performed.

6. The PDCServlet does not provide an implementation of the doPostService method so the

request is passed down the hierarchy until an implementation is found. In this case,
PDCAddUpdateServlet provides one in which the common functions required for both
adding and updating part information are performed. The doPostService method retrieves
the part information from the request and then invokes the Persist method of the lower level
Servlet, in this case the PDCAddServlet, to complete the action.

7. The Persist method of the PDCAddServlet is invoked. This method gets the remote
interface of the Parts Data Collection component that is running in the application server and
invokes the addPart method of that interface.

8. The addPart method of the Parts Data Collection component is invoked which causes the

information passed in with the user request to be added to the backend datastore.

5.2.2.1.1.2 Use of initializePropertyManager abstract method

The IFServlet uses an application specific property file that is based on the
IFPropertyManager class. Each Servlet that extends the IFServlet must implement the
initializePropertyManager abstract method. This is implemented to name the property file that
will be used for a given application Servlet or group of Servlets. The IFPropertiesManager
wrappers the PropertyResourceBundle class in Java. The IFServlet specific properties that
must be included in the referenced property file are shown in Table 16: Servlet Property File
Contents.

As far as a developer is concerned, the entire implementation of this abstract method will look
like the following example:

Figure 31: Example of IFPropertyManager Abstract Method

The parameter in quotes, PDCSession, names the application specific property file.

protected void initializePropertyManager()
{
 propertyManager = new IFFilePropertyManager("PDCSession");
}

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

123

Once initialized, the values contained in the property file can be extracted and used to alter the
execution of the application. This method allows the way the application behaves to be modified
without requiring it to be re-compiled.

An example of how to retrieve and store the values contained in the property file is contained in
the init method of the IFServlet. Please refer to the source code of the IFServlet for a complete
understanding of how this is accomplished.

Table 16: Servlet Property File Contents

File MUST contain
Properties

Possible/Example Values Description

Security_on= True, False Set to ‘true’ when the business
logic application server security is
turned on (AE to EE security), set
to “false” when security is not
activated.

Logging_config= C:\\WebSphere\\AppServer\\hosts \\d
efault_host*\\Log4J.properties
(* Your Specific application server
name. i.e. IPMS)

Specifies the property file that is
used to set the initial logging
configuration attributes. If NOT
using logging services, leave the
value of this parameter blank.

Initial_context_factory= com.ibm.ejb.cb.runtime.CBCtxFacto
ryHostWidenedDefault

Context factory used to locate
Components in the naming service.

Provider_url= iiop://rsa1app4.gcss.af.mil:900
Example only

This contains the DNS entry of the
business logic application server
host and port.

Host= rsa1app4 Example only The machine name of the business
logic application server host
machine.

Gcss_userid= cell_admin Example only Set to a DCE Cell administrator ID.
Used only if the business logic
application server security is turned
on

Gcss_password= core1234 Example only Set to a DCE Cell administrator
password . Used only if the
business logic application server
security is turned on

Client_style_url= ClientStyles.properties Properties passed to the
CBGlobalSeries initialization.
This file is obtained from the
Component Broker deployment
tools. Only the following two
properties need to be in this file:

• com.ibm.CORBA.nameServ

erHost= and
• com.ibm.CORBA.nameServ

erPort=

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

124

An application developer may add additional properties to this file in order to handle application
specific needs. Since the Servlet that extends the IFServlet must provide an implementation of
the IFPropertyManager abstract method, the initialization of application specific properties can
be handled there. They will be accessed in the same manor as the properties obtained in the
IFServlet. Again, refer the init method of the IFServlet for the details on how this is done.

5.2.2.1.1.3 Use of initializeServerConnection abstract method
The initalizeServerConnection method is used to initialize a connection between the Servlet and
the IBM WebSphere Application Server Enterprise Edition - Component Broker application
server (WAS-EE). This enables the Servlet to have access to business logic components that run
in that environment and to use the Component Broker (CB) naming service. An IFServlet based
Servlet performs all the same actions that any other client executing outside WAS-EE would be
required to do. Much of this complexity is hidden from the IF developer but still requires some
understanding on how to implement the abstract methods. More information about the naming
service is provided in Section 5.2.2.2.

The method CBSeriesGlobal is used to get an initialize the ORB. The following is the abstract
implementation of the initializeServerConnection method . This code shows how the Servlet
would initialize the CBSeriesGlobal object for a connection to the WAS-EE environment.

Figure 32: Example of Abstract Method Implementation of initializeServerConnection

If the client program uses either a copy helper or primary key class with an attribute that is an
object reference, then initializing CBSeriesGlobal is a requirement. This is because the
implementation of the copy helper and primary key depend on CBSeriesGlobal:orb() when
using the ORB object_to_string() operation. It is also a requirement to use CBSeriesGlobal if
security or object handles will be used in the Component Broker Client. Using CBSeriesGlobal
in all Component Broker client programs is generally recommended.

The CBSeriesGlobal interface provides a number of different Initialize methods depending on
the needs as a Java Servlet, Applet or application. All of these Initialize methods encapsulate the
calls to initialize the ORB and get an initial reference to the Naming Service. Refer to the CB
Documentation “Java Programming model ->The Java Client->Initializing the Component
Broker client environment” for more information.

protected void initializeServerConnection()
{
 try
 {
 String[] args = {"", ""};
 com.ibm.CBCUtil.CBSeriesGlobal.Initialize(args, ORBProperties);
 }
 catch (java.lang.Exception e)
 {
 System.err.println("exception " + e + " caught in init...");
 e.printStackTrace();
 }
}

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

125

5.2.2.1.1.4 Security - Authorization

The Integration Framework proxy server (WebSeal) puts authentication and authorization
information in the HTTPRequest header for common use by Integration Framework application
components. For common use and to provide a level of abstraction from the WebSeal
implementation, this information is captured in a security object named SessionInfoStruct.

The SessionInfoStruct object is defined as follows:

Figure 33 Example of SessionInfoStruct Code

A business logic component that is utilizing component level security checking will require this
object as in input parameter. The IFServlet base class provides the getSessionInfoStruct method
that is used to extract the user information from the HTTPRequest and build the
SessionInfoStruct. Once the information has been retrieved this structure needs to be passed as
a parameter in the method call.

To illustrate, the following line of code is a call to get a list of parts from the CORBA
PDCSessionAO Interface:

Figure 34: Example of PDCSessionAO Interface Code

There are three method calls in this single line of code. The first gets the remote interface of the CORBA
component executing in WAS-EE. The second is a call to the method that is provided by the IFServlet base
class that gets the security information that is contained in the request object. Finally, the getParts method
of the remote interface is invoked.

Class SessionInfoStruct
 UserSessionInfoStruct userSessionInfoData;
 AppSessionInfoStruct appSessionInfoData;
 string[] dynInfo;
Class UserSessionInfoStruct
 UserSecInfoStruct userSecInfoData;
 string[] dynInfo;
Class UserSecInfoStruct // User parameters required to make authorization decisions
 String username;
 String groups;
 String creds;
 string[] dynInfo;
Class AppSessionInfoStruct // parameters to aid the app in identifying its location in

 //the Policy Director Object Space
 String baseNameCTX;
 String baseNameQualifier;
 string[] dynInfo;

// A list of parts is returned
PartRecordArray = getRemoteInterface(request).getParts(1,getSessionInfoStruct(request));

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

126

5.2.2.1.1.5 Obtaining the IFServlet and other required "jar" and class
files

For application/Servlet development the following jars need to be imported into the application
developers development environment. A brief description of what is used in these jar files is
contained in Table 17: Servlet Development Dependencies.
Table 17: Servlet Development Dependencies

IF jar File IF VAJ Repository Project Description
Com_lmfs_framework_servlet
.jar

FrameworkTestComponents Contains the implementation of the
IFServlet base class.

Com_lmfs_framework.jar FrameworkTestComponents Contains the classes used by the
IFServlet for managing property
files and the ServletLoginHelper
used to gain access to the
Component Broker environment.

IBMCBPrereqs.jar IBM CB Prerequsites A subset of classes from the
somojor.zip that must be imported
into the development environment.
This also contains the
CBGlobalSeries class that provides
the naming services to the IFServlet.

CORBAFWAuth.jar CORBA Framework
Authorization

Contains class definitions specific to
the Security between AE and the
CB environment.

GCSSAFLog4j.jar GCSS_AF_IF_ESM_log4j Provides the APIs for the logging
services.

FrameworkComponents_Secur
ity.jar

FrameworkComponents_Security Contains IF security classes. The
IFServlet calls a helper class,
contained in this jar file, which is
used to get security information
pertaining to the user making the
request. This information is used to
populate a security structure,
sessionInfoStruct . This structure
is passed as a parameter in
component method calls and then
used to perform authorization
checks.

The Integration Framework provides the jar files and a VAJ repository that contains the projects
listed above. These classes must be loaded into the development environment workspace before
beginning development.

The file somojor.zip must be imported into the development environment in order to support the
development of application Servlets; this is represented by the project "IBM CB Prerequisites"
found in Table 17: Servlet Development Dependencies.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

127

For application use at runtime, two IF Jar files are provided by export from VAJ that allow a
developer to use the IFServlet. These are:

• com_lmfs_framework_servlet.jar
• com_lmfs_framework.jar.

These Jar files are located in the directory /h/IFSServices/lib on any machine where the
WebSphere AE application server is installed.

The IFSSERVICES.jar, provided by the Integration Framework, is used to combine framework
specific classes and jar files together into one jar file. Only Integration Framework specific jars
are contained in the IFSSERVICE.jar file. Since this jar file also contains class files that the
IFServlet uses, the IFSSERVICES.jar is placed in the /h/IFSServices/lib folder and then
added to the Application Servers CLASSPATH environment variable on a runtime system.

The file somojor.zip, obtained from IBM WebSphere Enterprise Edition, must be included at the
end of the base CLASSPATH environment variable that is found in the admin.config file in
/Websphere/appserver/bin. The runtime location of this zip file is /h/IFSServices/lib on the
AE hosts.

5.2.2.2 Using the Naming Service

The Naming Service provided by the WebSphere Enterprise Edition (WAS-EE) is used by the
Integration Framework to provide a federated CORBA and EJB namespace. WebSphere
Advanced Edition (WAS-AE) uses the same ORB as WAS-EE, but implements a different
interface to the naming service. This is an important distinction to understand when developing
in an environment other than WAS-EE. More information on this topic can be found in the
Business Logic section.

 Servlets use the Naming Service to locate application components executing in the WAS-EE
environment.

5.2.2.2.1 Using the Naming Service – Corba

Once CBSeriesGlobal is initialized, by the abstract method initializeServerConnection, the
Servlet must get a HOME Interface of the CORBA component using the CBSeriesGlobal
NameService to resolve a factory finder. The factory finder in turn can be used to resolve a
home interface. The getHome method is referenced from the findByPrimaryKey (listed below)
which gets a CORBA Object reference. With the Object reference, calls to any of the
components remote interface methods is possible.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

128

private PDCSessionAO findByPrimaryKey(HttpServletRequest req, String location)
{
 // Generic CORBA Object
 org.omg.CORBA.Object obj = null;

 // Create the Key
 byte theKeyString[] = null;
 PDCSessionAOKey pdcSessKey = PDCSessionAOKeyHelper._create();

 pdcSessKey.location(location);
 theKeyString = pdcSessKey._toString();

 // Get the Home, use the PrimaryKey to locate the object, or else create it
 com.ibm.IManagedClient.IHome theHome = getHome();
 try
 { logger.info("location = " + location);

 obj = theHome.findByPrimaryKeyString(theKeyString);

 if (logger.isDebugEnabled())
 {
 logger.debug("pdcSessKey = " + pdcSessKey);
 logger.debug("theKeyString = " + theKeyString);
 logger.debug("getHome() returned: " + theHome);
 logger.debug("Found obj: obj = " + obj);
 }
 }
 catch (com.ibm.IManagedClient.INoObjectWKey nowk)

 {
 // Create the PDCSession Object
 try
 {
 obj = getHome().createFromPrimaryKeyString(theKeyString);
 if (logger.isDebugEnabled())
 {
 logger.debug("Caught " + nowk);
 logger.debug("Object successfully created: obj = " + obj);
 }
 }
 catch (Exception ex)
 {
 logger.info("Caught General exception: " + ex);
 logger.info("ERROR: createFromPrimayKeyString() failed, Exception:
"
 + ex);
 }
 }
 catch (Exception e)
 {
 try
 {

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

129

 obj = theHome.createFromPrimaryKeyString(theKeyString);
 if (logger.isDebugEnabled())
 logger.debug("Object successfully created: obj = " + obj);
 }
 catch (Exception ex)

 {
 logger.info("Caught General exception: " + ex);
 }

 System.out.println("Printing stack trace");
 e.printStackTrace(System.out);
 }

 if (logger.isDebugEnabled())
 logger.debug("Calling PDCSessionAOHelper.narrow(obj)...");

 PDCSessionAO pDCSessionAO = PDCSessionAOHelper.narrow(obj);

 if (logger.isDebugEnabled())
 logger.debug("Called PDCSessionAOHelper.narrow(obj).");
return pDCSessionAO;
}

// Get the home of the PDCSessionAO
private static com.ibm.IManagedClient.IHome getHome()
{
 logger.debug("*** Called GetHome() v1");
 org.omg.CORBA.Object obj = null;
 FactoryFinder factoryFinder = null;
 String pdcSessionName = new String("PDCSessionModule::PDCSessionAO.object interface");
 com.ibm.IManagedClient.IHome pdcSessHome = null;

 System.out.println("***** Getting the Home interface from the Name Service ****");

 // Locate the factory finder
 try
 {
 if (logger.isDebugEnabled())

 logger.debug("CBSeriesGlobal.nameService().resolve_with_string(\'host/resources/factory-
finders/PDCSessionServers-server-scope\')");
 obj = CBSeriesGlobal.nameService().resolve_with_string("host/resources/factory-
finders/PDCSessionServers-server-scope");
 if (logger.isDebugEnabled())
 logger.debug("FactoryFinderHelper.narrow(obj)");
 factoryFinder = FactoryFinderHelper.narrow(obj);
 }
 catch (Exception e)
 {

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

130

Figure 35: Example of findByPrimaryKey code

5.2.2.2.2 Using the Naming Service - EJB

For EJBs, once CBSeriesGlobal is initialized by the abstract initializeServerConnection, as
discussed in Section 5.2.2.1.1.3 Use of initializeServerConnection abstract method,
getInitalContext is used to resolve an EJB Home that is used to resolve the remote EJB
interface.

The following example shows how this is done:

 System.out.println("ERROR: resolve_to_factory_finder() failed, Exception: " + e);
 System.exit(1);
 }

 // Resolve the Home for PDCSessionAO
 try
 {
 System.out.println("factoryFinder.find_factory_from_string(\"" + pdcSessionName +
"\")");
 obj = factoryFinder.find_factory_from_string(pdcSessionName);
 System.out.println("IHomeHelper.narrow(obj)");
 pdcSessHome = com.ibm.IManagedClient.IHomeHelper.narrow(obj);
 }
 catch (Exception e)
 {
 System.out.println("ERROR: resolve_to_PDCSession_home_via_find_factory failed,
Exception: " + e);
 System.exit(1);
 }
 return pdcSessHome;
}

protected Requisition getServiceBean(HttpServletRequest request) throws Exception
{
 if (logger.isDebugEnabled())
 logger.debug("Getting the 'Requistion' EJB Home...");

 //Locate the EJB using the CB naming service.
 Object homeObject =
 getInitialContext(request).lookup("Requisition");

 if (logger.isDebugEnabled())
 logger.debug("Got the 'Requistion' EJB Home.");

 RequisitionHome beanHome = (RequisitionHome)
 javax.rmi.PortableRemoteObject.narrow((org.omg.CORBA.Object) homeObject,
 RequisitionHome.class);

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

131

Figure 36: Example of getInitalContext code

5.2.2.3 JavaServer Pages (JSPs)

Java Server Pages (JSPs) are a simple but powerful technology used to generate dynamic to be
presented to a client on the server-side. It provides a way to separate content generation from
content presentation. JSPs are often coupled with other Servlets to allow flexible use of built- in
Servlet capability and the power of scripting Java directly in a stateless document. When a client
requests a JSP page, it is sent to the application server. The JSP processor Servlet (located on the
Application server) dynamically builds a Servlet from the JSP source page. This Servlet is then
executed with resulting output being written to the client response (HTTP) and sent to the clients'
browser. The JSP (like HTML) can submit form data to an application server just by referencing
a Servlet. If the base class of that Servlet is IFServlet, (this class handles the doGet and doPost

 if (logger.isDebugEnabled())
 logger.debug("Narrowed the General EJB Home Object to the specific
 Requisition Home Object.");

 return beanHome.create();
}

protected InitialContext getInitialContext(HttpServletRequest request)
{
 initialContext = (InitialContext) getValueFromSession(request, "initialContext");
 if (initialContext == null)
 {

try
 {
 System.out.println("try to get the initial context");
 initialContext = new InitialContext(EJBProperties);
 }

 catch (javax.naming.NamingException e)

 {
 logger.error("Error getting the EJB InitialContext: " + e);
 }
 catch (Exception e)
 { System.out.println("Caught exception in getInitialContext :" + e);
 }

 }
 System.out.println("initialContext= " + initialContext);
 return initialContext;
}

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

132

processing at this level) it calls doGetService/doPostService for processing at lower levels of
the Servlet hierarchy. This is the way to pass input and start the application Servlets that extend
the IFServlet thereby extending the services of this base class to the application.

The following code is from the Servlet test components provided with the Integration
Framework and its associated JSP used to dynamically construct a table containing the result of
the client request.

The first section of code shows how to use the Servlet doPostService method to call the
getPartRecordList method, which makes the component level call to get a list of parts.
Once the list is received, it is put into the list on the session. Then the call is made to the JSP
page to process the list.

Figure 37: Example of Servlet doPostMethod Usage

public void doPostService(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws Exception
{
 ……..

 // Forward to the appropriate JSP
 if (state.equalsIgnoreCase("view") || state.equalsIgnoreCase("delete") ||
state.equalsIgnoreCase("update"))
 {
 // invoke the remote method of the PDC that produces a list of parts that
meet the
 // criteria provided by the user.
 partRecordList = getPartRecordList(request, response, stockNumber);
 ……..

 // Put the partRecordList on the session
 getHttpSession(request).putValue("partRecordList", partRecordList);
 context.getRequestDispatcher("PDCViewList.jsp").forward(request,
response);
 }
 ……….
}

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

133

Note Future Capability: Below are snippets from the JSP page, It looks very much like
an HTML document but it has Java scripting in it.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"><!-- Sample JSP file -->

<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.2 for Windows">
<META http-equiv="Content-Style-Type" content="text/css">
<TITLE>
View Part List
</TITLE>
</HEAD>

<BODY BGCOLOR="#B7C1F1">

Notice that the next tag sets up the jsp for using the list object that was stored in the session.

<jsp:useBean class="java.lang.Object" id="partRecordList" scope="session" />

 …………
<%
try
{
 PDCHelperModule.PartRecord[] _p0 = (PDCHelperModule.PartRecord[])partRecordList; // throws an
exception if empty. %>
 …………

This loop is used to construct the Dynamic table. Notice _p0 is the partlist object, iterate though the
list and fill in the dynamic content from the partlist on the session. Also note that the first item of each
row of the table is a radio button and that this button is assigned a "stocknumber" from our session
object.

 for (int _i0 = 0; ;) {
 try {
 String stockNumber = _p0[_i0].stockNumber; %>
 <TR>
 <TD><INPUT name="partRecordGroup" type="radio" value="<%= stockNumber %>"></TD>
 <TD><%= _p0[_i0].stockNumber %></TD>
 <TD><%= _p0[_i0].manufacturer %></TD>
 <TD><%= _p0[_i0].partNumber %></TD>
 <TD><%= _p0[_i0].quantity %></TD>
 <TD><%= _p0[_i0].itemDescription %></TD>
 </TR><%
 _i0++;
 }
 ………..

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

134

Figure 38: Example Code taken from JSP Page

5.2.2.4 Applets

Applets are a good choice when infrequent or no access to server side resources is required.
Some types of client side programs are very well suited to Applets. Applets tend to have a richer
more robust GUI set. Development using Applets is not prohibited by the IF, but is not a
recommended approach and as such, no specific support is provided to aid in their development.
If Applets are used as part of a solution, it is recommended that they be signed for security
purposes.

5.2.2.5 Hypertext Markup Language (HTML)

HTML is the mechanism that is used to present static content information to the end user. This
information might be in the form of tables, images, links to other resources, forms, etc. In any
event, the Web browser interprets the HTLM document and the results are displayed. HTML is
used for two reasons:

Platform Independence
HTML is not specific to a given platform, and therefore, as long as the platform of interest has a
Web Browser, the desired information can be displayed. One caveat is that care must be taken
when using some of the advanced features or browser specific non-standard extensions of
HTML, as this may cause these applications to become browser specific.

No Active Content
Because of security concerns there is a desire to reduce or eliminate the use of active content in
the Web browser. The primary reason for the concern is the possibility that malicious software
may be loaded into the browser. Also, Air Force policy prohibits the use of dynamic content on
the client. The use of static HTML and HTML produced from JSPs for presentation eliminates
this concern.

Below values are placed in hidden Inputs to maintain state between JPS form submission and
the servlets that may be called on the submit.

<INPUT type="hidden" name="state" value="<%= request.getParameterValues("state")[0] %>" >
<INPUT type="hidden" name="location" value="<%= request.getParameterValues("location")[0] %>" >
<INPUT type="hidden" name="basenamequalifier" value="<%=
request.getParameterValues("basenamequalifier")[0] %>" >
 ……..

</CENTER>
</BODY>
</HTML>

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

135

5.2.3 Communications Between Layers

5.2.3.1 Vertical
1. Extend the IFServlet as the base class for all Servlets. This provide a capability to

programmatically log in (authenticates) to the WebSphere Application Server Enterprise
Edition (WAS-EE) via a ServletLoginHelpe r. Refer to Section 5.2.2.1.1 The IFServlet and
Its Use for additional details.

2. Ensure the correct properties are placed in the Application specific file extended from

IFPropertyManager. Refer to Section 5.2.2.1.1.2 Use of initializePropertyManager abstract
method for additional details.

3. Implement the doGetService and the doPostService with application specific processing as

described in Section 5.2.2.1.1 The IFServlet and Its Use for additional details.

4. Implement the appropriate initializeServerConnection abstract for EJB or CORBA as

detailed in Section 5.2.2.1.3 Use of initializeServerConnection abstract method or 5.2.2.2.2
Using the Naming Service - EJB.

5.2.3.2 Horizontal
Servlets are able to perform a wide range of functions. For example, a Servlet can:

• Create and return an entire HTML page containing dynamic content based on the nature of

the client request.

• It can call a JSP page to handle the formatting and even gather dynamic data from component

calls made in other Servlets.

• Communicate with other server resources, including CORBA components, EJBs databases,

and Java-based applications.

• Handle connections with multiple clients, accepting input from and broadcasting results to

multiple clients.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

136

5.3 Business Logic

5.3.1 Overview

The Business Logic layer consists of the components that are intended to contain the application
processing logic. This logic implements the identified business rules for the given application.
The components that execute in the business logic layer do not have any user interface
components, as they have no responsibility to interact with the user. Problems sensed with the
data should be communicated to the user interface layer through return values from methods that
the components in the presentation layer used to display messages to the user.

The terms business logic and business rules are often used interchangeably in reference to code
that occupies the functional region between the presentation layer and the data access layer. The
Business Logic layer component is stateless in that it does not hold data between method calls. It
encapsulates the details of the underlying data structure so that the client doesn't have to be
aware of table structures, relational structures, or even the underlying column names. The
Business Logic Layer also encapsulates transactions and performs indivisible business
transactions with single method calls.

The topics covered in this section are:

Guidelines for the use of EJBs

• Session Beans
• Entity Beans
• Initialization recommendations
• Development issues

Guidelines for the use of CORBA components

• Application Objects (AO)
• Business Objects (BO)
• Initialization recommendations
• Development Issues

Business layer messaging support

• Business Object Document (BOD) use
• Supporting classes and guidance provided by the Integration Framework
• Supporting software templates provided by the Integration Framework

Security Considerations

• Enabling security
• Method level authorization – What is required by the developer

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

137

• Obtaining access to the Integration Framework provided security service
• Additional parameter required
• Performing the authorization check
• What to do if the authorization check fails

Design issues related to deployment

• Designing for workload management
• Designing for scalability

Throughout this section code snippets are used as examples that are taken from the test
components that have been developed to drive the Integration Framework for testing purposes.
For a complete understanding of the recommended use of these technologies, refer to the "Parts
Data Collection" CORBA application test components and the "Requisitioning"
EnterpriseJavaBean test components. These business logic components execute in the
application server and can be used to help the reader understand the details of the topics
discussed throughout this section.

In addition to this guide, there are several very useful Redbooks produced by IBM that provide
descriptions of the development of enterprise applications in conjunction with IBM WebSphere
Enterprise Edition. These Redbooks can be found on the IBM Website at
http://www.redbooks.ibm.com.

5.3.2 Service Use

The services provided by the Integration Framework to the Business Logic component include:

Table 18: IF Business Logic Component Services

Services Functionality
IFSServices.jar Framework level client classes and framework classes provide

for use by the Business Logic Components
TextMessageApp MQ communication support from within a business application

deployed on the application server
Logging Facility Framework classes that provide runtime configurable debug

and logging of information for system management support
Info Structure Level Security Container managed configured security with the Application

Server
IFCBSecurity Service Framework service that provides application level

authorization

5.3.2.1 Enterprise JavaBean Components
This section is provided to aid in the development of Enterprise JavaBean (EJB) Components. It
is comprised of four subsections: overview, initialization, development issues, and deployment
issues. The overview subsection gives some fundamental framework concepts. It contains a
high level overview of EJB Components and associated terminology. The intent is not to

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

138

introduce the developer to EJB designs but rather to put into perspective the remaining
subsection, as they specifically apply to developing and deploying EJBs using the services of the
Integration framework.

These subsections will not flow like an EJB design cookbook; they will highlight and provide
guidance on issues relating to the Integration Framework’s product selection, services
requirements, constraints, or techniques. They will include specific code samples on any rules or
design constraints imposed on an EJB developer.

5.3.2.1.1 Enterprise JavaBean Component Overview

An Enterprise JavaBean (EJB) is a non-visual component of a distributed, transactional, and
possibly persistent enterprise application. EJBs run within the context of a software system
called an EJB Server. The Component Broker or CB portion of the IBM WebSphere
Application Server Enterprise Edition (WAS-EE) product is the Integration Framework’s EJB
Application Server. An EJB Server may contain one or more EJB Containers that are
responsible for handling the creation of new instances of the bean, details of persistence, thread
safety, transaction support and so on. It is important to stress that within the Integration
Framework there is one container for each bean that is in the EJB component.

The container is the environment in which Enterprise JavaBeans execute. Its role is to provide
the bean with services, so that the bean can remain blissfully unaware of the underlying
mechanisms used in implementing these services. The deployment descriptors are the main way
in which information is communicated from the EJB developer to the container in which the
bean will be deployed. For example, when the bean is deployed, the container reads the
deployment descriptor associated with that particular EJB bean and automa tically provides the
necessary transactional support. The Enterprise JavaBean Development Issues subsection will
address any constraints on container managed services (i.e. naming services and transactional
support).

Enterprise JavaBeans come in two fundamentally different types: session beans and entity beans.
An EJB component is a set of session beans and/or entity beans.

Session beans are an extension of the client application and are responsible for managing
processes or task. They are function-oriented components. They represent a set of behaviors
that reside on a server and can be invoked by clients either for a length of a method (in the
stateless session bean case) or for the life of the bean (in the stateful case). Since these beans
bear a lot of resemblance to standard distributed objects built using CORBA or RMI, most of the
same “design patterns” and strategies that apply to these technologies also apply to session bean
design.

Entity beans model data entities and provide shared distributed transactional access to persistent
data. An individual entity bean represents a single persistent entity – for instance a row in a
relational database.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

139

The Enterprise JavaBeans is composed of:

• A Home Interface (used to create and/or find beans)
• Key Implementation (identity of entity beans)
• The Remote Interface (lists business methods which client can invoke)
• Bean Implementation (the Business Logic)

The Deployment descriptor (setting used during deployment and describes runtime policies)Figure 39: Pictorial
Representation of an Enterprise JavaBean Component graphically describes the enterprise JavaBean in
the context of its deployment environment.

Although EJBs are straightforward to write, they can take advantage of advanced services such
as concurrency, persistence, and transactional support. EJB design shifts the burden of
implementing these services from the shoulders of the application developer to those of the
container provider.

Enterprise JavaBeans provide several benefits for application developers:

• Allow the developer to build distributed applications by combining components

developed using tools from different vendors.

• Make it easy to write applications. The developer does not need to deal with the low-

level details of transaction and state management, multithreading, resource pooling, and
other complex low-level APIs. However, if necessary, expert programmers can still gain
direct access to the low-level APIs such as user transactions.

• The EJB specification that governs the use of enterprise beans is compatible with other

Java APIs and CORBA. It also provides for interoperability between enterprise beans
and non-Java applications.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

140

Figure 39: Pictorial Representation of an Enterprise JavaBean Component

EJB development is done using an enterprise JavaBean development tool such as the
recommended IBM VisualAge for Java (VAJ) Integrated Development Environment (IDE). The
beans are then deployed into the IBM WebSphere Application Server Enterprise Editions
development environment, Object Builder. Here the mapping of entity beans to a database and
the production of run-time code takes place. Development and deployment issues associated
with EJB components are described in detail within the corresponding subsection.

5.3.2.1.1.1 Session Beans

As mentioned earlier, session beans act as controllers for other backend business logic. Usually
one or more session beans drive multiple entity beans to do the real work. As their name implies,
Session Beans are generally tied to the lifetime of a given client session. They are relatively
short- lived. Session beans are divided into two basis types: Stateless or Stateful.

A Stateless session bean is a collection of related services; each represented by a method. The
bean maintains no state from one method invocation to the next. When the user invokes a
method on a stateless session bean, it executes the method and returns the results without
knowing or caring what other requests have gone before or might follow. Think of a stateless
session bean as a set of procedures or batch programs that execute a request based on some
parameters and return a result. Stateless session beans are used when there is no client-specific
state variables. Contrary to popular belief stateless session beans can in fact, posses instance
variables. These variables must be shared among multiple potential clients (e.g. they should be
read-only).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

141

This means that any two instances of a stateless bean are equivalent. The stateless session bean
does not require any arguments on the create method. Any bean instance can be used for any
client.

A Stateful session bean is an extension of the client application. It performs tasks on behalf of
the client and maintains state related to the client. Stateful session objects are created in
response to a single client’s request, communicate exclusively with a single client, and are
destroyed when the client no longer needs them. They have a preset timeout period. The
timeout period is specified in the deployment descriptor. Each time a business method is
invoked the timeout clock is reset. If the client fails to use the Stateful bean before it times out,
the bean instance is destroyed and the remote reference is invalidated. This prevents the Stateful
session bean from lingering long after a client has shut down or otherwise finished using it. Since
Stateful beans maintain conversation between methods, they can implement any of several
ejbCreate() methods that take different sets of arguments. Note the ejbCreate() method is
essentially analogous to a constructor for Enterprise JavaBeans; it initializes an instance’s
internal state variable(s).

A session bean does not require a primary key class or find method because the developer does
not need to search for specific instances of session beans. They are created to provide a service
for a particular client and are not persistent; each client will create its own instance of the session
bean.

5.3.2.1.1.2 Entity Beans

Entity beans are essentially a transactional object persistence mechanism. They handle
persistence and data access. Entity beans are long- lived; they exist across client sessions, are
shared by multiple clients, and remain alive even after a restart of the server or other failure.
Typically, an Entity bean maps directly to a row in an underlying database. Within the
framework both DB2 and Oracle persistent storage is supported using the product supplied
application adapters.

Application developers may develop their own adapters for other persistent stores. Within the
world of Entity beans, there are two main types of beans: Entity beans with Bean-Managed
Persistence (BMP) and Entity beans with Container-Managed Persistence (CMP). An Entity
bean with bean-managed persistence contains code provided by the application developer that
controls the updates to the underlying database. In contrast, an Entity bean with container-
managed persistence contains no such code; instead it relies on the container to update the
database as necessary.

In general, Entity beans with container-managed persistence are simpler to implement (because
they do not require any imbedded database code). CMP entities are beans whose persistence (for
example, the storing and retrieving of their data from a backing store like a Relational Database)
is managed by the EJB container. This means that the container would, for instance, manage
both generating and executing SQL code to read and write to the RDB.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

142

Bean-Managed persistence EJBs leave the management of such details as what SQL is executed
to the developer of the EJB. Each BMP EJB is responsible for storing and retrieving its own
state from a backing store in response to specific “hook” messages (like ejbLoad() and
ejbStore()) that are sent to it at appropriate times during its lifecycle.

Whether BMP or CMP, each Entity bean instance has an associated Primary Key. Logically, a
Primary Key is a value or combination of values that allows the user to uniquely specify a row of
data. A client may create a new Entity Bean or find an existing bean with it’s associated primary
key. The ejbCreate() method and ejbFindByPrimaryKey() are the corresponding methods in the
bean implentation that support creating and finding beans.

While session beans require the ejbCreate() method it is up to the application developer of the
entity bean whether a create method is required. An entity bean implementer may choose to
have the entity beans represent objects already in a particular database and to not allow the
creation of new ones. In this case the developer would not need a create method.

The ejbFindByPrimaryKey() method will be generated by the container for CMP beans and must
be implemented by the developer in BMP designs.

5.3.2.1.1.3 Enterprise JavaBean Test Component
The IFTC4ReqComponent is an EJB Component developed and deployed as a test component
for the Integration Framework. It contains a controlling stateless session bean (Requisition) that
provides the high- level application interface to the client and coordinates the work of three other
beans. The other beans are the OrderHistory entity bean, the Inventory stateless session bean,
and the Ordering stateless session bean. This Integration Framework test component contains
coding samples for various bean design constraints and requirements. The beans:

• Perform application to application level communication using MQ container managed
messaging through the MQSeries Application Adapters.

• Utilize the Integration Framework’s Security service for application level authentication.
• Are integrated with the Integration Framework’s Logging service in support of Enterprise

System Management.
• Contain runtime configurable debug code.
• Provide both container level and bean managed transactional control.
• Use an oracle database for persistence storage.
• Implement the create by copy helper design pattern.
• Has a supporting utility Java class to perform common functions across beans.

They can be referenced to additional details on the snippets of code provided in the initialization
and development subsections.

5.3.2.1.1.4 Enterprise JavaBean Initialization

The EJB container is responsible for creating objects that implement the remote interface; these
objects act as proxies, forwarding the business method calls on to the object. When a client

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

143

invokes a create method on the bean’s home interface, the container creates an object of the
appropriate type and calls a method in the EJB class called ejbCreate(). The role of the
ejbCreate() method is roughly analogous to that of a constructor in an ordinary Java program. It
initializes the state of a class with any necessary argument variables.

For the CMP Entity Bean developed in VAJ, the ejbcreate() method will only use key fields as
parameters. If desired, the create from a copy helper design pattern can be emulated by
following these steps:

• Remove the default ejbcreate from the remote interface.
• Add a new method called ejbcreate with parameters for all the CMP fields or a structure

containing all fields.
• Set the CMP fields by using the setter methods (tool-generated) for the associated field,

passing in the corresponding parameter.
• Call the original ejbcreate method for the key fields.
• Add the new overloaded ejbcreate() method to the remote interface.

By not modifying the tool-generated methods, but extending the functionality by repackaging,
the developer ensures the integrity of the default code and logic.

The Framework imposes a requirement on the business logic design to initialize the Logging
Service prior to using it. Initialization occurs by calling the following API in the Logging
Service: “PropertyConfigurator.configure (filename);”

For EJB components there are two recommend design strategies to implement this. One, a
component may choose to have the session bean, supporting the control of the application,
perform this at EJB creation time. The other style is to have a service or utility Java class that is
shared amongst the beans within the component, perform this operation at elaboration time (in
the construction). This latter option is the way the requisition test component
(IFTC4ReqComponent) was implemented. All beans within the requisition test component
have an instance variable of the RequisitionUtilites class. The call to initialize the logging
facility was gated within the constructor of the RequisitionUtilites class so as to perform this
call once for the EJB component.

Which strategy used depends on factors such as: whether the developer will need an ejbcreate
method, the number of ejbcreate methods, or whether there is a need for a utility class. It is up
to the EJB developer to determine an approach that ensures that the Logging Services is
initialized once and only once for the EJB component and prior to any calls to log information.

5.3.2.1.1.5 Enterprise JavaBean Development Issues
As mentioned earlier, Visual Age for Java Enterprise Edition is the recommended development
environment to support Enterprise JavaBean development and deployment. It provides a full
Java development environment and also provides the necessary links and mechanisms via
WebSphere’s Object Builder (OB) to facilitate the bean deployment to the WebSphere

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

144

Application Server Enterprise Edition. Deployment of all EJB within the VAJ – CB
environment follow a normal procedural flow. This process is well integrated and repeatable
within the two environments. The VAJ online documentation takes the user through the VAJ to
OB process in a step by step approach.

In the normal process for the development and deployment of EJBs to the Component Broker
environment:

1. Beans developed and the business logic tested within the VAJ environment. Note that
beans using the Framework Business Object Documents (BODs) will not be able to test
in the VAJ WebSphere tool test environment. There is a conflict between the tools
org.omg.w.

2. Jar files are built and exported via VAJ-EE to the Component Broker’s Object Builder

where the container and associated deployment descriptors are mapped from the VAJ
specific environment to the necessary Corba specific library environment required for CB
deployment. Additional files are created that are required by the EJB server, CB, to
manage the EJB. The level of automation in this process varies and will be described in
more detail in the deployment subsection.

3. The EJB application family is then deployed to Component Broker via the Component

Broker’s Make process.

There are several development areas of concerns imposed on the EJB developer because of this
development and deployment paradigm. The intention of this subsection is to provide guidance
and techniques for developing within this environment. These constraints include preparing the
VAJ development environment, finding object homes, and transactional control is contained
within this subsection.

Preparing the development environment
The EJB development environment with VAJ will need to have the following steps performed in
order to build Integration Framework deployable enterprise bean components:

• Add Component Broker Client classes to the workspace. The batch file createCBjar.bat
is an NT based solution for creating a CB.jar file containing all the packages and classes
needed to deploy an EJB in the WAS-EE. This executable can be found on the SSG web
site. This batch process uses the somojor.zip file provided in the <drive>:Cbroker/lib
directory of the application server. It extracts all classes associated with a set of twenty-
two packages and creates a CB.jar containing all these classes. This jar file can then be
imported into the VAJ workspace; note since it modifies two standard VAJ packages it
must be imported into each developers’ VAJ workspaces.

• Add Integration Framework classes to the workspace. The VAJ projects associated with

any service (i.e. BODs, MQ messaging) will need to be imported into the workspace.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

145

• Add any client classes the developer will be communicating with component to
component.

How EJBs find beans within their component
The Java Naming and Directory Interface (JNDI) is used to find the name of an EJB home
object. By EJB specification, the InitialContext class serves as the client’s interface to the JNDI.
It contains bindings to a variety of naming services (JNDI, CORBA CosNaming, DNS, and so
on); providing a single interface that can be used to link to any naming services in the client’s
environment that supports JNDI. This is especially important for developers of Integration
Framework EJB components since they will be developing and preliminary testing in the VAJ
WebSphere Test Environment with the JNDI naming service and deploying within WAS-EE
using the CORBA common object service naming service.

What this means for an EJB developer is that bean homes will be found using the JNDI
independent of the naming services and let the JNDI property values dictate which naming
services to use. The developer will need to externalize these properties (providerUrl and
initialContextFactory) in environment variables, property files, or resource bundles rather that
hard code them into the enterprise bean code. Thereby, allowing the coding logic to remain the
same; it is the value of the properties that initialize the JNDI that will dictate which service to
use. The requisition test component contains several examples of locating a beans home.

This sample component used the resource bundle class to make runtime configuration changes.
The InitialContext value was dependent on the naming service used. As mentioned previously,
the VAJ WebSphere Test Environment uses the JNDI naming service and the WAS-EE uses the
CORBA Common Object Services for it’s naming service. What this translates to the bean
developer is different values in the bundle property file for the InitialContextFactory key. For
example when the requisition component was deployed in ObjectBuilder the property file
contained an entry of initial_context_factory =
com.ibm.ejb.cb.runtime.CBCtxFactoryHostWidenedDefault. While the entry of
initial_context_factory = com.ibm.ejs.ns.jndi.CNInitialContextFactory was used when
testing in the development environment. Whether the developer is testing in VAJ WebSphere
Test Environment with the JNDI naming service or at deployment time within WAS-EE using
the CORBA COS naming service the value of the initial context factory is what will be adjusted
to specify which naming service to use. A sample of code utilizing a resource bundle to initialize
the JNDI is shown in Figure 40: Locating and creating an EJB Home.

When performing a JNDI lookup on an enterprise bean deployed in the Component Broker
application server the JNDI home name passed to the lookup method is the JNDI name specified
in the enterprise bean's deployment descriptor abstractor from the beans property page in VAJ.

When using Session Beans, it is a good idea to make the reference to the EJB object as a class-
level variable rather than a variable that is local to a method. This allows the EJB client to
repeatedly invoke methods on the same EJB object rather than having to create a new object each

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

146

time the client invokes a Session Bean method. This approach is not recommended for Servlets,
which must be designed to handle multiple threads.

…

java.util.PropertyResourceBundle bundle =
 (PropertyResourceBundle) PropertyResourceBundle.getBundle("/bundleFilename");
java.lang.String initialContextFactory = bundle.getString("initial_context_factory");
java.lang.String providerUrl providerUrl = bundle.getString("provider_url");

java.util.Properties p = new java.util.Properties();
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, initialContextFactory);
p.put(javax.naming.Context.PROVIDER_URL, providerUrl);

// Create the initialContext Object
initialContext = new javax.naming.InitialContext(p);
…
// Using the initialContext object create the EJB home
YourBeanNameHome BeanHomeVar = null;
Object homeObject = initialContext.lookup(bundle.getString("Your_Bean_home_name"));
BeanHomeVar = (YourBeanNameHome)
 Javax.rmi.PortableRemoteObject.narrow((org.omg.CORBA.Object) homeObject,
 YourBeanNameHome.class);
// Using the EJB home create an instance of the bean
YourBeanName BeanNameInstance = BeanHomeVar.create();
…

Figure 40: Locating and creating an EJB Home

How EJBs find other components within the EJB Server

An EJB component should locate all services or components deployed within WAS-EE with the
CORBA COS naming services. The basic steps are as follows:

• Get the factory finder, specifying the searching scope
• Resolve the string name to a CORBA object
• Narrow the object to get the home

Figure 41: Locating a WAS-EE deployed component provides a snippet of code for locating a
deployed object from within an Enterprise JavaBean component. This design philosophy
removes any dependency of “type of the component” (i.e. EJB or CORBA) from style of
communication. All components deployed within the WAS-EE will locate other components
using the CORBA COS naming service.

….
// get the factory finder
java.lang.String ffPath = "host/resources/factory-finders/" +
 com.ibm.CBCUtil.CBSeriesGlobal.serverName() +

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

147

 "-server-scope-widened";
org.omg.CORBA.Object iObj =
 com.ibm.CBCUtil.CBSeriesGlobal.nameService().resolve_with_string(ffPath);
theFactoryFinder = com.ibm.IextendedLifeCycle.FactoryFinderHelper.narrow(iObj);

// resolve the String name to a CORBA object
java.lang.String TMOutboundClassName = bundle.getString("TMOutboundHomeName")
java.lang.String ffpath = TMOutboundClassName + ".object interface";
org.omg.CORBA.Object obj = theFactoryFinder .find_factory_from_string(ffpath);

// narrow the Object to get the Home
outboundMsgHome =com.ibm.IMessageHome.OutboundMessageQueueHelper.narrow(obj);
….

Figure 41: Locating a WAS-EE deployed component

Transactional support
Applications use transactions to group related updates to data such that all of the updates occur
or none do. Typically, an application: Starts a transaction, makes the updates and associates them
with the transaction, and terminates the transaction. When an application terminates a
transaction, it can request that the transaction is either rolled back or committed. If the
application requests rollback, all of the updates it has made are undone. If the application
requests that the transaction is committed, the Transaction Service checks that each object
involved in the transaction is able to make its updates permanent. If all objects indicate that they
can, the transaction is committed. Otherwise, the updates are undone just as if the application
requested a rollback. The result of a transaction (that is, whether it is committed or rolled back)
is referred to as its outcome. The transaction attribute, associated with the bean, is set as a
deployment descriptor in the VAJ development environment.

When writing the code required by an enterprise bean to support transactions, remember the
following basic rules:

• For transactions, a session bean can either use container-managed transactions or
implement bean-managed transactions; entity beans must use container-managed
transactions.

• An instance of a stateless session bean cannot reuse the same transaction context across
multiple methods called by an EJB client; Stateless Session Bean’s methods are
independent of each other. Therefore, it is recommended that the transaction context be a
local variable to each method that requires a transaction context.

• An instance of a Stateful session bean can reuse the same transaction context across
multiple methods called by an EJB client. Therefore, make the transaction context an
instance variable or a local method variable at the developers discretion. (When a
transaction spans multiple methods, the developer can use the
javax.ejb.SessionSynchronization interface to synchronize the conversational state with
the transaction).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

148

• If an enterprise bean begins a transaction, it must also complete that transaction either by
invoking the commit method or the rollback method. Also, an EJB Bean can not begin a
second transaction until the first transaction has been committed; this will cause an
exception to be thrown indicating nested transactions.

• In the EJB server (CB) environment, a Stateful session bean that implements the
TX_BEAN_MANAGED attribute must begin and complete a transaction within the
scope of a single client method call.

• The EJB server (CB) utilized in the Integration Framework does not support the setting of
the transaction attribute for individual enterprise bean methods; the transaction attribute
can be set only for the entire bean.

• The MQ Application Adapter interface, which is used by EJB for application to
application level communication, requires all messaging to be encapsulated within a
transaction. The user can explicitly control this in a session bean by setting the
transaction attribute to TX_BEAN_MANAGED or let the container manage the
transaction by setting the transaction attribute to TX_REQUIRES. The developer must
also design with the constraint that synchronous communication with MQ cannot be done
within a single transaction. That is an application can't be designed to send a message and
then wait for a reply within the same transaction. The reason for this is within the
transaction scope the message will not be placed on the queue until the transaction is
committed. However the developer would not commit the transaction until the message
is received and processed successfully. If the developer designed the request reply
communication within a transaction scope the transaction would always take the rollback
path.

The transaction attributes that have restrictions in WAS-EE are:

TX_BEAN_MANAGED -It notifies the container that the bean class directly handles the
transaction. The developer must write the code that explicitly demarcates the boundaries
of a transaction. . This attribute can be specified only for session beans and it cannot be
specified for individual bean methods.

TX_SUPPORTS and TX_NOT_SUPPORTED- Not supported in the EJB Server (CB).

There are three basics steps involved in a bean managing a transaction (see Figure 42: Bean
managed transaction for an example):

1. The enterprise bean class must set the value of the javax.ejb.SessionContext object
reference in the setSessionContext method. The setting of this value is done on the
developers behalf when the client calls the create method on the home interface in the
EJB Server environment (CB).

2. Create a javax.transaction.UserTransaction object by calling the getUserTransaction
method on the SessionContext object reference to obtain the current transaction
reference.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

149

3. The UserTransaction object is used to participate in the transaction by calling
transaction methods, such as begin and commit, as needed.

Import javax.transaction.*;

...
 public class MyStatelessSessionBean implements SessionBean {
 private SessionContext mySessionCtx = null;
 ...
 public void setSessionContext(.SessionContext ctx) throws RemoteException {
 mySessionCtx = ctx; // Note: This attribute is set by the session bean’s
 // container at creation time
 }
 ...
 public float doSomething(long arg1) throws RemoteException {

 // Use userTran object to call transaction methods
 UserTransaction userTran = mySessionCtx.getUserTransaction();
 ...
 userTran.begin();

 // Do transactional work
 ...
 userTran.commit();
 ...
 }
 ...

Figure 42: Bean managed transaction

5.3.2.1.1.6 Enterprise JavaBean Deployment Issues

Once the developer has completed developing and preliminary unit testing in the VAJ
environment they will deploy the beans in WAS-EE.

If the developer plans to deploy the enterprise beans to WebSphere Application Server,
Enterprise Edition, they need to be exported to an EJB JAR file composed specifically for the
Component Broker (CB) deployment tools. This is an option on the export menu in the VAJ
bean development environment.

Component Broker contains an EJB Deployment tool for deploying beans from one development
environment into the Component Broker development environment. The EJB Deployment Tool
works with Object Builder to create and compile the files required by the EJB server (CB) to
manage an enterprise bean. The EJB Deployment Tool introspects the EJB JAR file, paying
attention to the EJB home, the EJB object classes and the deployment descriptors. The EJB
Deployment Tool generates a model that Object Builder uses to create the necessary deployment
library files. The output of this process is a set of server side and client side JAR and library
files.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

150

Visual Age for Java provides an option, which automatically launches component broker at the
time the developer exports the bean component to the EJB Jar file. Component Broker’s EJB
Deployment Tool will then take the developer through a set of screens allowing them to map the
VAJ developed beans for deployment within the WAS-EE. If the workstation does not have the
WebSphere Application Server, Enterprise Edition installed, the developer can launch the CB
deployment tools separately after exporting the EJB jar file on another machine containing
Object Builder. This entire process is explicitly defined in the VAJ online help in deploying
EJBs. Depending on implementation, some data types may have to be remapped. If the developer
wishes to deploy the CMP beans to Component Broker, be aware that VisualAge for Java
converters other than VapTrimStringConverter are not directly supported there. However, the
Object Builder tool can automatically handle the mapping of most basic Java data types in
preparation for deployment to Component Broker. The safest course of action is to check the
schema created in Object Builder.

At this point in the deployment process all business logic components utilize the same process
for deploying in the WAS-EE. The EJBs and the CORBA components are identical. This
generic process is documented in Component Brokers Online help. It takes the developer
through the steps running the generated make files and deploying using the system manager user
interface.

If the EJB component utilizes any of the Integration Framework services the developer will need
to have IFSSERVICES.jar in classpath for code generation and at runtime.

5.3.2.2 Corba Components

5.3.2.2.1 Corba Components Overview

CORBA Component Based applications are specifications for interfaces. The CORBA Interface
definition language (IDL) is one of the important aspects of the CORBA specification. IDL is an
object-oriented language that identifies object classes, class hierarchies, and methods to provide
particular services. An interface between components is written independent of operating
systems and programming languages and thus provides great flexibility to developers working in
environments with different platforms and development tools. The IDL file is compiled using
the CORBA IDL compiler, which generates the stubs and skeletons required for a distributed
application. These stubs and skeletons are a set of interfaces and classes from which object
implementations and complete applications are built.

CORBA's Object Request Broker (ORB) locates objects, manages connections and
communications between stubs and skeletons, and invokes object methods on behalf of the
client.

CORBA Server Test Components provided with the Integration Framework were developed and
deployed using IBMs WebSphere Application Server Enterprise Edition (WAS-EE). One of the
major product components of WAS-EE is Component Broker (CB). CB is one of the most
complete and integrated implementations of the Common Object Request Broker Architecture

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

151

(CORBA) initiative.1 CB provides an environment for distributed computing at the enterprise
level. CB is an Object Server that consists of both a runtime package called the Component
Broker Connector (CBConnector) and a development environment called VisualAge Component
Development for WebSphere Application Server Enterprise Edition (CBTools).

The runtime package provides a server in which business object components run and is managed
through a set of management tools. These components run in a robust multi-threaded server,
which provide easy access to a wide variety of services and capabilities. For more detailed
information on the Object Services refer to WebSphere EE Programming Guide Advanced,
SC09-4443-00. These object services are available in an integrated fashion based on the OMG
model and the Component Broker Managed Object Framework (MOFW). Behind these high-
level Component Broker services are the CORBA Object Services used by the server
frameworks. Server frameworks shield application developers from low-level interfaces to
system services and CORBA services and help to make application objects portable across
platforms.

5.3.2.2.2 Corba Component Initialization
Java Corba components can make use of the log4j logging facility provided with the Integration
Framework. The logging facility must be initialized before use, that is, before any method of the
component logs a message using the logging facility. The Component Broker framework
provides a Corba component method called initForCreation(). It is recommended that
component-specific initializations occur in this method. The use of the logging facility typically
requires initialization of a static variable, which can and does occur in this method for the PDC
test application component provided with the Integration Framework.

When the initForCreation() method is overridden, the Object Builder tool will produce warning
messages to this effect at the time it checks the model for errors. To the extent that these
messages are produced by the overriding of initForCreation() for initialization of logging, these
messages are expected and can be safely ignored.

5.3.2.2.3 Corba Component Development Issues

5.3.2.2.3.1 No framework logging from C++ components
In the realm of Component Broker application components, it should be noted that logging
facilities are provided by the Integration Framework only for Java components, not for C++
components. This is because the version of the C++ compiler that ships with Component Broker
does not support a language feature (specifically, the namespace keyword) used by the C++ port
of the logging facility. Consequently the logging facility cannot be used for logging in C++
application components that get deployed in Component Broker.

1 Component Broker Information Libra ry

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

152

5.3.2.2.3.2 Use of threads in request/response messaging
When using the Request/Response messaging style from within a Component Broker component
and using the MQAA, one plausible approach might be to send a message and immediately issue
a blocking read of the response message. It turns out that this approach does not work using
Component Broker 3.5 and the accompanying MQAA because the thread in which the message
was sent and in which the response is being read never relinquishes control. As a result,
although the message does get sent, the response never arrives because the responder program,
which runs in a different thread in the application server, does not get control while the first
thread is waiting for the response. This appears to be an artifact of how the application server
containers work. The workaround is to code the sender so that it explicitly relinquishes control,
say via Thread.sleep(), as it is waiting for the response message. This allows the responder
thread to execute and the response to arrive, ready to be read by the first thread.

5.3.2.2.4 Corba Component Deployment Issues

Note Future Capability: The System Management User Interface (SMUI) is the tool
used to create, configure and deploy Applications and Servers. It is important to know
what to name the ServerGroups and Servers since the Application code and Clients are
dependent on it to locate the Homes.

In the PDC application set, several elements of the application have influenced the way
the servers are configured and named and how the factory-finders are used to locate the
needed homes. We have the concept of 'location' which determines what data is
accessed. The PartsDataCollection and Part objects are not dependent on the actual
database they access. That database is specified only when the servers supporting these
classes are defined in the System Management EUI. Since a single installation can
support servers accessing more than one 'location' (ENTERPRISE, BASE1, BASE3 and
so on) specific database, the name assigned to the servers reflects the 'location' that the
server supports. Depending on whether the Homes are workload managed or not, we
have used different factory-finders.

• Non-workload managed

The PDCSessionAO, which receives location as an argument, can locate appropriate objects,
by using 'server-scope' factory finders, constructing the full name from the location value. Thus
the Server that supports the ENTERPRISE location is named ENTERPRISEPDCServers and
the Server Group that includes all these servers is named ENTERPRISEPDCSvrGrp.

E.g. "host/resources/factory-finders/<location>PDCServers-server-scope"

Note Future Capability: Where location = ENTERPRISE, BASE1, BASE3 and so on

Thus, the Server Names are ENTERPRISEPDCServers, BASE1PDCServers and so on.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

153

Other objects used by the PDCSessionAO (e.g. the IFCBSecurityInfo, TMInbound and
TMOutbound classes) do not need to come from the same server, though, if they are available
there access to remote objects may be avoided. Note that the Messaging application is configured
with our Server so it would be found at the server-scope level but the Security Server is
configured as a separate Server, so to locate both objects using the same factory-finder, the
option is to widen the search. Thus we used the following factory-finder <ServerName>-server-
scope-widened.

Note Future Capability: E.g. "host/resources/factory-finders/<ServeName> -server-scope-
widened"

Figure 43: Example of host/resources/factory-finders/<ServeName>-server-scope -widened Code

To support Workload Management, the modifications were made to PDCSessionAO and
PartsDataCollection/Part objects. PDCSessionAO is defined to have an UUID key such that
it is not restricted to one instance per ‘location’. Each user will get a separate instance of the
PDCSessionAO, which controls the transactions. An additional AO, PDCAO is also defined to
have an UUID and is created to support PartsDataCollection/Part objects.

The PDCAO contains all the Business logic and supports all the query and collection
management across the PartsDataCollection and Part objects. The relationship between
PartsDataCollection and Part objects is still maintained. Also the PDCSessionAO and PDCAO
object classes have been defined with WorkLoad Managed homes but the instances of the classes
are NOT workload managed. Thus the homes for these classes are registered in the namespace
under the <ServerGroupName>-server-scope' as described above. The ServerGroups and
Servers are named such that the Client can easily locate the proper home for these object.
Therefore the Server that supports the ENTERPRISE location is named
ENTERPRISEPDCSvr<nn> and the ServerGroup that includes all these servers is named
ENTERPRISEPDCServers where nn = 01, 02 and so on. Similarly the location BASE1 results in
BASE1PDCSvr<nn>, and BASE1PDCServers , etc. Thus the PDCSessionAO can locate
appropriate objects by using 'server-scope' factory finders, constructing the full name from the
location value.

Note Future Capability: Since the PCDSessionAO object needs to access PDCAO
objects, which are configured to support a specific 'location', this class uses the

where < ServerName > is the current server.

We can substitute <ServerName> with the function
“CBSeriesGlobal.serverName()” which returns the name of the Server in which the
code is running..

For Clients to locate the home for the PDCSessionAO, the server-scope factory-finder is used.

-Workload managed

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

154

<ServerGroupName>-server-scope factory-finder to locate the home for the properly
configured class.

 E.g. “workgroup/resources/factory-finders/<location>PDCServers -server-scope ”

where location = ENTERPRISE, BASE1, BASE3 and so on.

Thus, the ServerGroupNames are ENTERPRISEPDCServers , BASE1PDCServers.

The PDCAO also needs to locate the home for the PartsDataCollection and Part objects
that are configured to the 'current location', i.e. the location that was used to locate the
PDCAO object's home. Since all three of these classes are packaged in the same
'application' they will all be supported by any server that includes the PDCAO class. The
strategy used to locate the home uses the function CBSeriesGlobal.serverName()
(which returns the name of the server in which the code is running) and constructs the
name for the proper factory-finder from that value.

E.g. "workgroup/resources/factory-finders/<ServerName>-server-scope"

 where <ServerName> is the current server.

We can substitute <servername> with the function
CBSeriesGlobal.serverName() which returns the name of the Server in which
the code is running.

Clients of the PDC Application set need only locate the home for the PDCSessionAO
class, and that home can be located using any of several factory-finders,

E.g. "workgroup/resources/factory-finders/PDCSessionServers-server scope"

where servergroupname = PDCSessionServers

This factory-finder is the most restrictive, though, because this class is 'visible' in the workgroup
and cell, the 'workgroup-scope' and 'cell-scope' factory finders will also find the needed home.

5.3.2.3 Business Object Document Support

The Open Application Group's (OAG) Business Object Document (BOD) is the architecture
used to communicate messages or business documents between software applications or
components. Each Business Object Document includes supporting details to enable the
destination business application to accomplish the action.

Architecturally, the Business Object Document consists of two areas, shown in the following
figure:

• Control Area
• Business Data Area

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

155

Figure 44: BOD Structure

Business Object Documents are represented as Extensible Markup Language (XML) documents.
The OAG provides the definition of the content of each of the BODs defined for application to
application communication. Guidelines are also provided that allow the USERAREA contained
within the Business Data Area to be extended, if required, to include additional BOD data while
still maintaining BOD commonality.

Complete sets of Document Type Definition (DTD) files are available from the OAG web site at
http://www.openapplications.org/. The DTD is the formal definition of the BOD and is used by
the parser to validate the overall structure and content of a message. Simply put, the DTD acts as
a template used to define the message structure and relationships between the data elements. In
some cases, the DTD information is embedded inside the XML message. For the purposes of
this OAGIS XML implementation, DTDs will always be deployed as a set of separate files.

This OAGIS XML solution is implemented as a set of three resource DTDs, and an additional
DTD for each business service request. The resource DTDs include information that is common
across all BODs. These resource DTDs are used to define Data Types, Fields, and Segments that
are used in the BODs. A small number of complex data types, or Super Segments are also
defined. The service request support files define individual request unique definition and
structure, as well as additional attributes or element restrictions that are not defined in the
resource files. Changes in the definition of a BOD to support the development of a particular
application must be reflected by the developer in the appropriate DTD(s).

The Integration Framework provides a Java base class that presents an implementation of the
basic structure of a BOD. This class allows the control area and a generic data area to be
created. Setter and getter methods are also provided for the data elements that make up the

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

156

control area. It is the responsibility of the application developers to create any extension classes
that are required for building and parsing the data area of the any additional BODs required by
the application.

Refer to the Open Applications Group Integration Specification (OAGIS) for additional details
on the structure and content of the Business Object Documents defined by that group as well as
rules governing their use. To obtain a copy of the OAGIS document, or any additional
information about the Open Applications Group please refer to http://www.openapplication.org.

5.3.2.3.1 Business Service Requests

A Business Service Request (BSR) is the component of a Business Object Document (BOD) that
a sender uses to describe a requested action by the recipient. A BSR is made up of the noun, the
verb, and the revision. Every BOD contains one, and only one, BSR. . Each of the nouns and
verbs, as defined by the OAG, are also described in the OAGIS document.

Verb

The Verb is the actual service to be performed. The Verb can be thought of as the action verb of
the Business Service Request.

Examples of a verbs used in BSRs are:

• SYNC,
• SHOW,
• GET,
• LIST,
• Etc.

Noun

The Noun indicates the object the service is to be performed on, such as G/L Journal Entry. The
Noun can be thought of as the action item of the Business Service Request.

Examples of nouns used in BSRs are:

• INVENTORY
• ITEM
• PO
• SALESORDER
• Etc.

Revision

Revision is used to identify the version of the Business Service Request. The version is a three-
digit field, beginning with 001 and incremented each time the Business Object Document

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

157

specification is changed. Each BOD has its own revision number to specifically identify the
level of that BOD, not just the release version of the OAGIS specification.

Example verb-noun-revision combinations used by the test components supplied with the
Integration Framework are:

• SyncInventory003
• UpdateInventory003
• AddRequisitn002
• GetlistIem001
• ListItem001

The Integration Framework provides a base class to be used for the creation of BODs. This base
class implements the getter and setter interface methods necessary to build the control area of the
BOD. Part of that control area is the Business Service Request.

5.3.2.3.2 XML Usage

As mentioned above BODs are represented as XML documents. XML documents consist of
elements delimited by tags, attributes of those elements, and data, in a well- formed order.
Elements in the document can also be nested. The element tags, nesting, attributes, and order are
defined in a DTD. An XML document can be classified as well- formed, or valid. Well- formed
documents respect the syntax – proper begin and end tags, proper nesting, etc. Valid documents
not only are well- formed, but they also follow the structure detailed in the DTD. The BODs used
in the IF must be valid. An XML Parser is used to check an XML document to determine if it is
just well- formed or valid. The IF uses the IBM Apache XML parser for this purpose.

The Document Object Model (DOM) is an API for XML and HTML documents. The W3C
specification of DOM level 1 provides a low-level set of fundamental interfaces that can be used
to access and manipulate any part of a structured document. In brief, XML documents are
considered as data and DOM is used to access that data. In the IF, the DOM interfaces are used
in the BOD classes to get, set, add, and delete elements in the XML BOD. The parser will break
the BOD into a DOM tree, and then the programmer uses these relations from DOM to get to the
specific elements. If the BOD was left as a string instead of being parsed in to a DOM, the
programmer would have to repetitively scan the string looking for tags, process the data within
the tags, then do it again for the next tag.

The recommendations for the specification for XML as well as the Document Object Model are
available from the World Wide Web Consortium (W3C) at their web site: http://www.w3c.org.

5.3.2.3.3 DTD Repository

The Document Type Definitions (DTDs) for the BODs are located in a repository. Each BOD
has a unique DTD. The repository also contains the three resource DTDs provided by the Open
Applications Group.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

158

It's recommended that each processing center, at the sending and the receiving ends of the
communication, have its own copy of the repository that is stored at a given URL on the local
Web Servers. This URL is "gcss-af_dtd_repository". This URL has to be the same at each site,
and requires an entry in the Domain Name Server (DNS) for that site. This allows the DTD to be
resolved and located locally and eliminates the need for an external repository.

A few things to keep in mind when dealing with a DTD repository are:

• If the URL is changed, the change must be reflected in the BOD DTDs, as they contain a
hard-coded reference to the location of the BOD DTD in the DTD repository.

• If the structure of a BOD gets modified, for example a new element is added to the
customer defined USERAREA, the DTD for that BOD must be distributed and deployed
to all the repositories.

• If a new BOD is added, the corresponding DTD must also be created and added to the
repositories at all ends of the communication.

• If DTDs on each end of the communication do not match, the receiving end will not be
able to parse the BOD that was created on the sending end and will then be unable to
access the data contained in it.

5.3.2.3.4 Supporting Classes and Templates

Provided with the IF is the BOD base class (BOD.java) as well as the application specific BODs
which are extensions of that class used by the various test components provided with the IF.
Several extended classes to the basic BOD class are provided as examples for application
developer use. These are ConfirmBOD, GetListItemBOD, ListItemBOD,
SyncInventoryBOD, and UpdateInventoryBOD.

The base BOD class consists of the methods to create, parse and access the basic elements of the
XML document. The getter and setter methods for elements in the Control Area of a BOD are in
this class. The extension classes contain the getter and setter methods for each element in each
of the specific BODs. These methods use the access methods in the base class to manipulate the
unique elements of that particular extended BOD class. For example, the methods in the base
class would allow manipulation of XML BOD elements in the DOM tree structure relative to a
particular branch in that tree, such as get2deep(). This will start at the current node and traverse
both horizontally and vertically through the child/levels, 2 layers deep. The methods in the
extension classes would employ those base class methods.

As an example, a getter method such as, getItem(), would position the node pointer using the
XML parser DOM methods to the correct document node as specified by the BODs DTD, then
pass the child/levels to the get2deep() base class method and return the value of the BOD
element “Item”. The structure of each of the getter methods, for each of the elements of that
particular BOD, would be similar, first position the node pointer, then pass along the child/level
information to the appropriate base class method. There are also methods specific to each

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

159

extended BOD class that enable the developer to build the tree structure document for that
specific BOD and also methods to traverse that particular structure. An example of such a
method is findElement() in the ListItemBOD class. The BOD programmer must pay very close
attention to the definition of the structure of each BOD while coding the creation and traversal
methods in order to ensure the BODs will parse correctly.

The method for parsing and validating a BOD is in the base BOD class string constructor. But
each of the extended classes will use that base class parser method to verify the XML BOD.
Then the extension class will set the node pointers for the class specific data area nodes in that
BOD in order for the setter and getter methods to start at the correct node position.

5.3.2.3.4.1 Extension of BOD base class

The BOD base class provides an implementation of the control area of a BOD. The control area
is common across BODs of different types. However the data areas of different BODs differ.
The extension of the BOD base class provides the BOD-specific implementation of the data area.

An application developer would extend the base class to create a new BOD class by first
subclassing the BOD base class defined in BOD.java. Then setter and getter methods would be
added to the new BOD which navigate the DOM hierarchy of the BOD as it is defined in the
BODs formal specification. These methods allow applications to set or get the values of the
attributes of the BOD.

5.3.2.4 Security

Refer to Section 6 Securing the Application for overall guidance on security. The following
section addresses aspects of security that are the responsibility of the MAs using EJB
Components and CORBA Server Components.

Table 19: EJB & CORBA Server Components Security Activities an extraction from the full
table in Section 6 Securing the Application, identifies the activities that are the responsibility of
the MA engineering team. Except for the actual programming aspects, all of the activities
identified herein need to be coordinated with the GCSS-AF Operations and Support Organization
and the GCSS-AF Security Organization.

Table 19: EJB & CORBA Server Components Security Activities

Security Area Activity
Authentication Define component identities

♦ Components that are not invoked directly or indirectly by an end user
may need to authenticate to the system as a component identity.

♦ Components that need to act on behalf of a user to invoke methods that
the user would not normally be given carte blanche access to may need to
authenticate to the system as a component identity.

Access Control Define groups/roles and object access control rules (ACLs)

♦ Refer to 6.3 Access Control for additional details on the tasks involved.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

160

 Using API(s) as needed for access control
♦ Refer to 6.3.5 Access Control and Web Objects for details.

Audit and Alarms Generation of non-COTS security audit records
♦ This step is required only if MA requires audit beyond what IF provides.
Refer to 6.7 Audit and Alarms and in particular 6.7.1 Logging Framework
Security Events for additional details.

5.3.2.2.5 Authentication
The GCSS-AF Integration Framework relieves the MA from providing a separate authentication
mechanism. The MA has the responsibility for trusting that WebSEAL has properly
authenticated a user and accepts the identity that is passed to it as the originating identity for all
actions. The MA will use this identity for Access Control and Audit requirements.

The MA has the responsibility for defining component identities in the scenarios identified in
Table 20: MA Authentication Scenarios. This is not meant to be an exhaustive list, but merely to
stimulate the MA to think about how access control and the authentication mechanisms as part of
its design task.

Table 20: MA Authentication Scenarios

Situation Example
Components that are not invoked directly by an end
user may need to authenticate to the system as a
component identity.

For example a trigger application that reads and
processes messages off of a queue may not have
access to the originating user information in a form
that would allow it to make specific authorization
decisions based on that originating user. The
methods that the application is invoking require an
identity to make its access control decisions.
Another example is a wrappered Legacy application
where a file is FTP into a directory. An MA can
process the file and invoke secured methods using
the component’s identity.

Components that need to act on behalf of a user to
invoke methods that the user would not normally be
given carte blanche access to may need to
authenticate to the system as a component identity.

A Finance MA may provide a method to
checkForSufficientFunds on an account based on
an account number and a dollar amount. The
finance MA doesn’t want to open this method up to
all end users as this may allow unauthorized users to
gather information about other accounts. The
finance MA creates another method called
userCheckForSufficientFunds that verifies that the
user has access to that account before providing
feedback. Users are allowed access to this method
and a component identity is created that is allowed
access to the original checkForSufficientFunds
method.

The IF provides the gcssafAuthenticateUser method that is part of the IFCBSecurityInfoAuthz
Object in Component Broker to perform this function for the application. The sessionInfoStruct

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

161

created by this function can be passed as a parameter to CORBA and EJB methods just as the
sessionInfoStruct created for the user and passed in by the Servlet or EJB. To make
applications work properly, it may be necessary to add additional parameters, as required by the
invoked application. For example, the location and basenamequalifier parameters of the
sessionInfoStruct are required by the test components.

com.ibm.IBOIMExtLocal._IUUIDPrimaryKeyImpl UUIDKey = new
com.ibm.IBOIMExtLocal._IUUIDPrimaryKeyImpl();
UUIDKey.generate();
static private org.omg.CORBA.Object obj=null;
obj = theHome.createFromPrimaryKeyString(UUIDKey.getUuid());
x = IFCBSecurityInfoAuthzHelper.narrow(obj);
IFCBSecurityInfoStructObjectHelper usi = new IFCBSecurityInfoStructObjectHelper();
UserSessionInfoStructHolder h = new UserSessionInfoStructHolder();
h.value = usi.sessionInfoStructData.userSessionInfoData;
booleanResult = x.gcssafAuthenticateUser(“cn= ILS -BASE1-
PDC.TRIGMON,ou=USAF,ou=PKI,ou=DoD,o=U.S. Government,c=us”,
“AppsPassword”, h);

Figure 45: IFCBSecurityInfoSFigure 8: gcssafAuthenticateUser Code Example

The process for planning for access control for application identities is the same as for end users.
See 6.3.1 Planning for Access Control to see the steps involved.

Refer to 6.2 Authentication for recommendations on standards and conventions for application
userIDs.

5.3.2.2.6 Access Control
The primary responsibility from a security perspective of the MA is to create method level
authorizations using the Policy Director2 infrastructure.

In order to provide method level authorizations, the MA needs to perform the steps below that
are defined in Section 6.3.1 Planning for Access Control:

1. Determine Resources Requiring Protection
2. Derive Group Data
3. Derive User Data
4. Determine Level and Type of Protection
5. Set Up Data in Policy Director
6. Develop Access Control Checks in MA Software
7. Coordinate Fielding in an Operation Environment

2 A background in the Policy Director product is essential for the planning phases of these tasks and for inputs
specifically into the product. Sufficient details are provided in this section for MA developers to write access
control checks for EJB and CORBA Server Components.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

162

This section will attempt to identify specifics related to EJB and CORBA Server Components in
this process. When there is no distinction, the reader will be referred to Section 6 Securing the
Application

Step1 - Determine Resources Requiring Protection

The methods of the CORBA and EJB Server Components are the potential objects requiring
protection. During the design phase for Step - 1, it is sufficient for planning purposes merely to
define the methods within the module, interface, and method hierarchy. Step - 4 will require the
actual IDL that was generated. For CORBA Server Components this may very well be the same,
but the EJB Server Components methods get wrappered within WebSphere. The generated IDL
uses the wrappered name of the method.
It is not necessary to perform access checks on every method.

Step 2 - 2. Derive Group Data

Please refer to 6.3.1 Planning for Access Control. There is nothing unique about EJB or CORBA
Server Components for identifying user roles.

Step 3 - Derive User Data

Please refer to Section 6.3.1 Planning for Access Control. There is nothing unique about EJB or
CORBA Server Components for identifying the rules by which users are added to each role.

Step 4 - Determine Level and Type of Protection

6.3.1 Planning for Access Control provides guidance and philosophy on how and where to
place Access Control Lists. This section will cover the output of this step as it pertains to EJB
and CORBA server Components.

Three steps were identified for this process:

A. Derive the hierarchy of objects and functions.
B. Determine the business rules to apply in deciding access to each item in the

hierarchy.
C. Derive the ACLs corresponding to each rule or set of rules at each point in the

hierarchy.

Step A - Derive the hierarchy of objects and functions

Policy Director Object Space for Applications -The Object Namespace is used by the
MA when making explicit access control checks using the aznAPI. The MA needs to
coordinate with the GCSS-AF Enterprise Authority and its Operations and Support arm
to identify where the MAs application falls in the Object Space.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

163

The IF has standardized on /GCSS-AFAPPS as the application root for all MAs. The
GCSS-AF Enterprise Authority and its Operations and Support arm are responsible for
defining and maintaining the standards and conventions for the rest of the object
namespace. One recommendation is to use the convention detailed in Table 21: IF Policy
Director Application Object Namespace (Recommendation). The recommended
standard is to use uppercase, so as not to have to remember mixed case rules, for the
upper levels of the object space. When defining the object space for modules, interfaces,
and methods, the industry standard conventions for these should be used.

Table 21: IF Policy Director Application Object Namespace (Recommendation)

Level Description
/ Policy Director root object.
/GCSS-AFAPPS Application root for all GCSS-AF MAs. This level

is fixed.
/GCSS-AFAPPS/<domain> <domain> is the functional domain that is

responsible for providing services. E.g. ILS. It is
recommended that each domain have its own
namespace file on the Master Security Management
Server.3 This recommendation helps an
administrator manage the file as it grows and allows
different administrators to support different domains
at the concurrently.

/GCSS-AFAPPS/<domain>/<location> <location> is the base via a georef code or other
standard, MAJCOM, enterprise, etc that the
applications defined below it support. The GCSS-
AF Enterprise Authority should tightly control the
list of locations. The significance of location is
based on the data. If the backend data is retrieved
from a single database for all bases, then a location
of enterprise may be appropriate. If a different
database and therefore application instance is
required for each base, then a location that identifies
the base is appropriate.

/GCSS-
AFAPPS/<domain>/<location>/<application>

<application> is an arbitrary name that uniquely
identifies an application

After the application, the CORBA/EJB Server Component’s module, interface, and then
method follow it in the namespace. The MA should use the generated IDL to extract the
modules, interfaces, and methods. EJB developers should particularly take note as the
EJB methods are wrappered when deployed in Component Broker. The method will be
prepended with passthru_. The safest mechanism, however, is to verify what gets
generated in the IDL. It is necessary for the MA to use the module, interface, and method
in addition to the front piece of the application object namespace shown in Table 21: IF
Policy Director Application Object Namespace (Recommendation) when making access
control checks. An example of a Policy Director Namespace for a CORBA Server
Object is shown in Figure 46: Policy Director Object Space for PDC Test Component.
An example of a Policy Director Namespace for an EJB Server Component is shown in

3 Refer to the Tivoli SecureWay Policy Director Administration Guide for details on adding 3rd party namespaces.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

164

Figure 47: Policy Director Object Space for PDC Test Component (Part A) and Figure
48: Policy Director Object Space for PDC Test Component (Part B).

/getPartRecord

/setPartRecord

/Part

/addPart

/listQueriedParts

/queryPart

/removePart

/updatePart

/PartsDataCollection

/PDCModule

/addPart

/getParts

/getPartsByStockNum

/messageReady

/queryPart

/removePart

/updatePart

/PDCSessionAO

/PDCSessionModule

/PDC
ACL:ILS-ENT-CLRKMAINT

/ENTERPRISE
ACL:ILS-ENT-RESTRICTED

/getPartRecord

/setPartRecord

/Part

/addPart

/listQueriedParts

/queryPart

/removePart

/updatePart

/PartsDataCollection

/PDCModule

/addPart

/getParts

/getPartsByStockNum

/messageReady

/queryPart

/removePart

/updatePart

/PDCSessionAO

/PDCSessionModule

/PDC
ACL:ILS-BASEx-CLRKMAINT

/BASEx
ACL:ILS-BASEx-RESTRICTED

/ILS
ACL:ILS-RESTRICTED

/GCSS-AFAPPS
ACL:GCSS-AF RESTRICTED

Figure 46: Policy Director Object Space for PDC Test Component

/passthru_updateInventory

/com_lmfs_framework_testcomponents_requisition_Inventory

/Inventory

/passthru_checkplacedOrderStatus

/passthru_placeAnOrder

/com_lmfs_framework_testcomponents_requisition_Ordering

/Ordering

/passthru_addRequisition

/passthru_getPartList

/com_lmfs_framework_testcomponents_requisition_Requisition

/Requisition

/REQUISITIONING
ACL:ILS-BASEx-CLRKMAINT

/BASEx
ACL:ILS-BASEx-RESTRICTED

/ILS
ACL:ILS-RESTRICTED

/GCSS-AFAPPS
ACL:GCSS-AF RESTRICTED

Figure 47: Policy Director Object Space for PDC Test Component (Part A)

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

165

/passthru_create

/passthru_findByPrimaryKey

/com_lmfs_framework_testcomponents_requisition_OrderHistoryHome

/OrderHistoryHome

/REQUISITIONING
ACL:ILS-BASEx-CLRKMAINT

/BASEx
ACL:ILS-BASEx-RESTRICTED

/ILS
ACL:ILS-RESTRICTED

/GCSS-AFAPPS
ACL:GCSS-AF RESTRICTED

Figure 48: Policy Director Object Space for PDC Test Component (Part B)

Step B - Determine the business rules to apply in deciding access to each item in the
hierarchy.

Step C - Derive the ACLs corresponding to each rule or set of rules at each point in
the hierarchy.

Steps B and C are performed simultaneously. The natural mechanism for defining ACLs
is for the MA to walk the namespace and determine who (which user role/group) needs
access to what and the type of access required by that role. Refer to Table 22: Example
Policy Director Access Control Lists (ACL) for a list of ACLs that were defined for the
PDC Test Component.

Each rule should be set as high in the hierarchy as possible. For example, if there is only
one business rule governing who can read any item the MA must protect, then apply this
rule to the root level of the hierarchy, not to each item individually. Figure 46: Policy
Director Object Space for PDC Test Component delineates assignments of ACLs.
Methods without an ACL explicitly defined traverse up the tree and use the next defined
ACL in the namespace.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

166

Table 22: Example Policy Director Access Control Lists (ACL)

ACL Name Type (user/group) & Name Permissions4
Group GCSS-AF-Admins Full Access
Authenticated Traverse

GCSS-AF Restricted

Unauthenticated No Access
Group GCSS-AF-Admins Full Access
Group ILS -Admins Full Access
Group ILS -ENT-Admins Full Access
Authenticated Traverse

ILS-ENT-RESTRICTED

Unauthenticated No Access
Group GCSS-AF-Admins Full Access
Group ILS -Admins Full Access
Group ILS -Supply Clerk Traverse, Create, Read, Update, Delete, Execute
Group ILS -Maintenance Traverse, Create, Read, Update, Delete, Execute
Authenticated Traverse

ILS-ENT-CLRKMAINT

Unauthenticated No Access
Group GCSS-AF-Admins Full Access
Group ILS -BASEx-Admins Full Access
Group ILS -BASEx-Users Read
Authenticated Traverse

ILS-BASEx-RESTRICTED

Unauthenticated No Access
Group GCSS-AF-Admins Full Access
Group ILS -Admins Full Access
Group ILS -Supply Clerk Traverse, Create, Read, Update, Delete, Execute
Group ILS -Maintenance Traverse, Create, Read, Update, Delete, Execute
Authenticated Traverse

ILS-BASEx-CLRKMAINT

Unauthenticated No Access

Step 5 - Set Up Data in Policy Director

This activity is the responsibility of the Operations and Support Organization with input from the
steps above from the MA. Refer to 6.3 Access Control for additional information on setting up
data in Policy Director.
As indicated above, the EJB and CORBA Server Components use a 3rd Party Namespace in
Policy Director. It is necessary to update the appropriate ASCII text files and policies in Policy
Director when EJB and CORBA Server Components are added, updated, or deleted to maintain
this 3rd Party Namespace.5 The recommendation is to, at a minimum, maintain a separate
namespace file for each domain for ease of administration and file locking.

Step 6 - Develop Access Control Checks in MA Software

The tasks required to perform this Step:

4 Table 31: Pseudo-Supply Test ACLs in 6.3.1 Planning for Access Control uses the actual permission labels used
by Policy Director. They are written here to provide a higher level understanding for a developer and not for actual
implementation in Policy Director. Please refer to the Tivoli SecureWay Policy Director Administration Guide and
6.3.2 Setting up ACLs for the actual format of the permissions.
5 Please refer to the Tivoli SecureWay Policy Director Administration Guide for instructions on updating 3rd Party
Namespaces.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

167

A. Accept the sessionInfoStruct type as a parameter to the method
B. Build the parameters required by the gcssafAccessDecisionAllowed method
C. Find/Create a CBSecurityInfo model instance (scope host-scope-widened)
D. Invoke the gcsafAccessDecisionAllowed method
E. Turning security on in SMUI

Step A -Accept the sessionInfoStruct type as a parameter to the method

Each method that needs to be protected with access control checks shall accept a
sessionInfoStruct structure as a parameter. If the method does not directly make access
control checks, but invokes other methods that do require access control checks, then the
method would still need to accept a sessionInfoStruct structure to be able to pass it to the
invoked methods. The sections below describe how to perform this for CORBA and EJB
Server Components.

CORBA Server Components -See Figure 49: Example IDL from
PDCSessionModule of the PDC Test Component provides an example IDL for a
CORBA Server Component. CORBA Server Components need to create a
dependency on the IFCBSecurityInfo model in the Component Broker Object
Builder tool when any of the methods use the sessionInfoStruct type. This
dependency is reflected in the IDL by having the IFCBSecurityInfoFile.idl
include file.

•••
#include <IFCBSecurityInfoFile.idl>
•••
module PDCSessionModule {
 interface PDCSessionAO;

 interface PDCSessionAO : IManagedClient::IManageable
 {
 •••
 •••
 void addPart(in long pdcID,in PDCHelperModule::PartRecord pRecord, in
IFCBSecurityInfo::SessionInfoStruct sessInfoStruct) raises
(IManagedClient::IDuplicateKey,PDCHelperModule::PDCException);
 •••
}; // end interface PDCSessionAO
}; // end of module PDCSessionModule

Figure 49: Example IDL from PDCSessionModule of the PDC Test Component6

EJB Server Components -See Figure 50: Example IDL from
com_lmfs_framework_testcomponents_requisition_OrderingTie.java of the
Requisition Component Test Component provides an example IDL for an EJB

6 Snippet taken from PDCSessionClasses.idl

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

168

Server Component. EJB Server Components need to have the IFSServices.jar
file in their classpath in order to use the sessionInfoStruct type.

•••
public interface com_lmfs_framework_testcomponents_requisition_OrderingTie extends java.rmi.Remote
{
•••
•••
// Bean-specific business methods
 public java.lang.String placeAnOrder_object_ (IFCBSecurityInfo.SessionInfoStruct arg0,
java.lang.String arg1, java.lang.String arg2, java.lang.String arg3, int arg4, java.lang.String arg5) throws
java.rmi.RemoteException, java.lang.Exception;
•••
}

Figure 50: Example IDL from com_lmfs_framework_testcomponents_requisition_OrderingTie.java of the
Requisition Component Test Component

Step B -Build the parameters required by the gcssafAccessDecisionAllowed method

To build the parameters required by the Access Control method, the MA Developer has
to use information available from the code itself and information obtained and
coordinated with the Operations and Support Organization.

The parameters of the gcssafAccessDecisionAllowed method are:

Table 23: Parameters of the GCSSAF/AccessDecisionAllowed Method

Parameter How Obtained
UserSessionInfoData Obtained from sessionInfoStruct parameter.

This structure is created and passed in from the invoking application
(Servlet, JSP, other CORBA or EJB Server Component) as part of the
sessionInfoStruct parameter.

SecLabelString The Policy Director Object Space (relative or fully qualified context). If
this field is formatted as a relative context, then it is pre-pended with the
AppPdLabel field to define the Policy Director Object space to check the
permission against. Additional information for determining the contents of
this field is provided below

Permission Action that the method is trying to perform. Refer to Section 6.3.2 Setting
up ACLs for a definition of the permissions.

AppPdLabel Initial context. Built with information from the sessionInfoStruct
parameter and MA specified information. Additional information for
determining the contents of this field is provided below.

CacheTimeout Should be set to 0 for now. The design was anticipating a caching
mechanism in the future.

UserSessionInfoData -The UserSessionInfoData parameter is contained in the
sessionInfoStruct that is passed as a parameter to applications that require
security access control checks. The data for the userSessionInfoData piece of

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

169

the sessionInfoStruct is created by Policy Director as a part of the authentication
process. Servlets and

SecLabelString -The purpose of the SecLabelString and the AppPdLabel in the
gcssafAccessDecisionAllowed method is to identify the object as it is represented
in Policy Director.

To create SecLabelString, the MA Developer can determine the names of the
module, interface, and method of the method they are trying to protect. In the
code example, the format that the Access Control method is expecting this
information is as follows: String secLabelStr =
"[./PDCSessionModule/PDCSessionAO/addPart/]" ; Because it was pre-
pended with a “./” it is a relative Policy Director Namespace Context and the
AppPdLabel parameter will be used to fully qualify it.

AppPdLabel -To create the AppPdLabel, the MA Developer obtains certain
information from the sessionInfoStruct parameter. The sessionInfoStruct
parameter contains the baseNameQualifier and baseName context. The
baseNameQualifier parameter identifies the initial levels of the Policy Director
Object Namespace where this application resides. It is composed of the fixed
/GCSS-AFAPPS root context for GCSS-AF applications and the functional
domain. For our pseudo-supply test application, the baseNameQualifier is
/GCSS-AFAPPS/ILS.

The baseNameCtx is the location that the data represents. Refer to Table 21: IF
Policy Director Application Object Namespace (Recommendation) for additional
information. Examples from the IF Test Components for this field are;
ENTERPRISE, BASE1, BASE2, and BASE3.

It is incumbent on the invoking app to determine this information and supply
appended to the end of the AppPdLabel is the Application Identity. As identified
in Step 4 - Determine Level and Type of Protection of this process, this label is
created by the MA and coordinated with the Operations and Support
Organization.

The design of the application may determine an alternate approach of obtaining
the AppPdLabel parameter. The recommendation is to limit the amount of hard
coding, except for static content.

public void addPart(int pdcID, PDCHelperModule.PartRecord pRecord,
IFCBSecurityInfo.SessionInfoStruct sessInfoStruct)
 throws com.ibm.IManagedClient.IDuplicateKey,
 PDCHelperModule.PDCException
 {
 •••
 // local variables

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

170

 // security Label String String secLabelStr = "[./PDCSessionModule/PDCSessionAO/addPart/]" ;
 // appPDLabel String
 String appPDLabelStr = sessInfoStruct.appSessionInfoData.baseNameQualifier +
 "/" + sessInfoStruct.appSessionInfoData.baseNameCtx +
 "/PDC" ;
 •••
}

Figure 51: Example of Obtaining Parameters Required by the gcssAccessDecisionAllowed Method

Step C -Find/Create an IFCBSecurityInfo model instance (scope server-scope-
widened)

Figure 52: Code Example of Finding IFCBSecInfo Home and Figure 53: Code Example
of Creating IFCBSecurityInfo Instance provide an example of the code necessary to
create and locate an IFCBSecurityInfo model instance.

private com.ibm.IManagedClient.IHome getIFCBSecInfoHome()
 {
 /**
 * This method will locate the Home for the IFCBSecInfo class
 * It will use a server-scope-widened server based on the current
 * serverName to locate that home.
 */
 •••
 // local variables
 // temp CORBA Object
 org.omg.CORBA.Object obj = null ;

 try {
 if (iIFCBSecInfoHome == null) {
 // getSSWFactFinder() returns a name service with the following parameters
 // “host/resources/factory-finders/" +
 // CBSeriesGlobal.serverName() + "-server-scope-widened
 obj = getSSWFactFinder().
 find_factory_from_string("IFCBSecurityInfo::IFCBSecurityInfoAuthz.object interface") ;
 •••
 iIFCBSecInfoHome = com.ibm.IManagedClient.IHomeHelper.narrow(obj) ;
 •••
 } // end if
 }
 catch (Exception exc) {
 logCat.error("PDCSessionAO-" + location() + "::getIFCBSecInfoHome::Exception caught: ", exc) ;
 }
 •••
 return iIFCBSecInfoHome ;
 •••
}

Figure 52: Code Example of Finding IFCBSecInfo Home

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

171

private IFCBSecurityInfo.IFCBSecurityInfoAuthz createIFCBSecInfoAuthz()
 {
•••
 /**
 * This method creates the IFCBSecurityInfoAuthz object using the home
 * @return IFCBSecurityInfo.IFCBSecurityInfoAuthz
 */
 if (iFCbSecInfAthz == null) {
 •••
 try {
 // create and generate the uuid key
 com.ibm.IBOIMExtLocal._IUUIDPrimaryKeyImpl iFCbSecKey = new
com.ibm.IBOIMExtLocal._IUUIDPrimaryKeyImpl() ;
 iFCbSecKey.generate() ;

 org.omg.CORBA.Object obj = getIFCBSecInfoHome().createFromPrimaryKeyString(
iFCbSecKey.getUuid()) ;
 iFCbSecInfAthz = IFCBSecurityInfo.IFCBSecurityInfoAuthzHelper.narrow(obj) ;
 }
 catch (Exception exc) {
 logCat.error("PDCSessionAO-" + location() + "::createIFCBSecInfoAuthz::Exception caught: ", exc) ;
 }
 •••
 } // end if

 return iFCbSecInfAthz ;
 •••
}

Figure 53: Code Example of Creating IFCBSecurityInfo Instance

Step D -Invoke the gcsafAccessDecisionAllowed method

Refer to Figure 54: Code Example of Invoking the gcsafAccessDecisionAllowed
Method as an example for invoking the gcssafAccessDecisionAllowed method.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

172

public void addPart(int pdcID, PDCHelperModule.PartRecord pRecord,
IFCBSecurityInfo.SessionInfoStruct sessInfoStruct)
 throws com.ibm.IManagedClient.IDuplicateKey,
 PDCHelperModule.PDCException
 {
 •••
 // check if user is allowed to access the method
 boolean accessAllowed = createIFCBSecInfoAuthz().gcssafDecisionAccessAllowed
 (sessInfoStruct.userSessionInfoData,
 secLabelStr,
 "K",
 appPDLabelStr,
 0) ;
•••
if (accessAllowed) {
 try {
// Perform the action
•••
}
 catch (com.ibm.IManagedClient.INoObjectWKey nowk) {
// used as an example catch for the code snippet, other exceptions are handled as well
•••
 }
•••
} // end if accessAllowed
 else {
 // User not authorized. Perform error handling
 logCat.warn("PDCSessionAO-" + location() + "::addPart::ACCESS DENIED!!") ;
 throw new PDCHelperModule.PDCException("PDCSessionAO-" + location() + "::addPart::ACCESS
DENIED!!") ;
 }
•••
}

Figure 54: Code Example of Invoking the gcsafAccessDecisionAllowed Method

Step E -Turning security on in SMUI

The MA needs to establish a secure environment when fielding their application in
WebSphere. The list assumes that the WAS EE server was installed and configured with
security turned on and specifically on the name server application. 7 The MA should refer
to the IF Software Installation Procedures document for current recommendations on
configuring the MA when fielding the application in the WebSphere environment.

7 Refer to the IF Software Installation Procedures document for installation and configuration of the WAS EE
server.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

173

Step F -Coordinate Fielding in an Operational Environment

From a security perspective, at a minimum the MA needs to supply to the Operations and
Support Organization the following information that was generated via the previous
steps:

1. Group Names and Membership Rules
2. All of the IDL generated for the application (Relates to Object Space)
3. The functional domain that this application resides in
4. The locations (a.k.a. baseName context field) that the data represented by the

application will support. This is a joint activity with the Operations and
Support Organization.

5. ACLS (Roles and Permissions)
6. ACL allocation to the PD Object Namespace

Additional information will be required from the MA based on the Operations and
Support Procedures.

5.3.2.2.7 Audit and Alarms
The primary responsibility from a security perspective of the MA is to create method level
authorizations using the Policy Director8 infrastructure.

Refer to 6.7 Audit and Alarms for an overview of the audit and alarm mechanisms provided by
the IF.

In general, applications should not need to log security related events separately from the IF.
However, in the event that MA requirements analysis indicates the need to log (for security
purposes) some event that is not already logged by the IF security services, the IF provides a
mechanism for doing so. Section 6.7.1 Logging Framework Security Events indicates how the
logging service can be initialized. The logging process is explained in Section 6 Securing the
Application.

(Note that log4j is primarily intended to log non-security events for debug or other purposes.)

5.3.3 Communications Between Layers

5.3.3.1 Vertical

An application may want to communicate with or use services in the Presentation or Data later.
This section will describe any special steps the developer needs to take in order to do this.

8 A background in the Policy Director product is essential for the planning phases of these tasks and for inputs
specifically into the product. Sufficient details are provided in this section for MA developers to write access
control checks for EJB and CORBA Server Components.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

174

5.3.3.1.1 Presentation
No services or recommendations are provided for communicating to this layer.

5.3.3.1.2 Data layer

If an application wants to use ORACLE services from inside a Component Broker application, it
will be necessary to use the ORACLE Application Adapter, which functions as an interface
between CB and ORACLE. Use of the ORACLE application adapter is described in the online
help that accompanies it.

Similarly, an Application Adapter is provided for the DB2 database. If an application wants to
use DB2 services from inside a Component Broker application, it will be necessary to use the
DB2 Application Adapter, which functions as an interface between CB and ORACLE. Use of
the DB2 application adapter is described in the online help that accompanies it.

It is also possible for applications developers to write their own application adapters to link CB
components and the back-end of their choice. This path requires extensive knowledge of
Component Broker internals and those of the back-end chosen and is at least very difficult. This
option is not recommended nor for the faint of heart.

5.3.3.2 Horizontal

The approach taken by the Integration Framework is to have Business Service Components
communicate using the Business Object Document mechanism specified by the Open
Applications Group. It is intended that applications or application components will pass BODs
between each other in order to communicate desired requests using MQSeries.

Refer to the Open Applications Group Integration Specification (OAGIS) for a complete
description of the Business Service Request and the Business Object Document that the OAG
have defined. That specification can be obtained from the Open Applications Group web site at
www.openapplicationsgroup.org.

Messaging services are provided between applications by MQSeries. Component Broker
application components interface to MQSeries using the MQSeries Application Adapter
(MQAA).

The MQSeries application adapter provided by Component Broker is used primarily to provide a
semi-transparent integration between Component Broker business applications and non-
Component Broker applications that are based directly on MQSeries. The MQSeries application
adapter supports communication between Component Broker servers on Windows NT and
Solaris and an MQSeries queue manager on the same local host.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

175

The use of the Component Broker MQSeries Application Adapter is shown in the following
figure:

Figure 55: Use of the MQSeries application adaptor by a Component Broker application

From a client perspective, an MQSeries-backed application looks like any other Component
Broker-based client application that uses Component Broker
transaction services.

Note: The MQSeries application adapter currently only supports a transactions container policy;
to throw an exception and abandon the call when used outside the scope of a transaction.
(Atomic transaction method calls are not supported.)

The managed objects representing messages behave like any other managed object that uses the
transaction services. Because such an object represents a message in a queue manager, its life
cycle is controlled by the standard messaging data access operations, insert, retrieve, update, and
delete (IRUD). Component Broker, and its MQSeries application adapter framework, drive these
OM and IM object instances and call the IRUD methods at appropriate times. For example, if a
client application is trying to get an inbound message that is not currently instanced in the
application server, it creates a new IM object and issues the retrieve method on it to get the
message from its queue. If the client commits the transaction, the message is removed from its
queue.

For more information about how the Component Broker programming model uses the MQSeries
application adapter, see the “The Component Broker message processing model” topic in the
Component Broker documentation.

The Integration Framework provides extensions to the out-of-the-box IBM inbound and
outbound message components. The extensions are called TMOutbound and TMInbound
(components in the TextMessage application) and allow the application using them to decide at
runtime which queue to use for putting or getting a message. They also provide access to many
attributes of the incoming and outgoing message objects such as priority, expiry, feedback and
encoding. The extension of the specialized home for incoming message objects is called
IExtendedMessage . The extension of the incoming message object is called TMInbound, and

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

176

the extension for outbound message objects is called TMOutbound.The extensions are used in a
manner comparable to those provided by IBM. To use the TMOutbound object, a copy helper
is instantiated and its attributes set to the values desired of the outgoing message. The copy
helper is then passed to the put() method of the outbound message object home.

Here is an example of sending a message using the TMOutbound message object:
 // set the queueName for GetListItem BOD from Base PDCs to Enterprise PDC
 // set to PDC.ENTERPRISE.GETITEM.INBOUND
 String destQueue = "PDC." + nameStr + ".GETLISTITEM" + ".INBOUND" ;
 // copy for TMOutbound
 TextMessageCopy.TMOutboundCopy outCopy =
TextMessageCopy.TMOutboundCopyHelper._create() ;

 // set the destination queueName
 outCopy.queueName(destQueue) ;

 // set replyToQueue name for ListItem BOD from Enterprise PDC to Base PDCs
 // set to PDC.<loc>.LISTITEM.REPLY.INBOUND where loc = BASE1, BASE2, or
BASE3
 String replyToQueue = "PDC." + nameContext + ".LISTITEM" + ".REPLY" +
".INBOUND" ;

 // set ReplyToQ name
 outCopy.replyToQ(replyToQueue) ;

 // set correlator to an empty string
 outCopy.correlator("");

 // set reply message as the message data
 outCopy.messageData(getLstItmStr.getBytes()) ;

 // convert the copy helper to a byte array

 theCopyOrKeyStr = outCopy._toString() ;

 // start a transaction

 // obtain access to a transaction control object.

 obj = CBSeriesGlobal.orb().resolve_initial_references("TransactionCurrent") ;

 currentTransaction = org.omg.CosTransactions.CurrentHelper.narrow(obj) ;

 currentTransaction.set_timeout(180) ;

 // begin transaction
 currentTransaction.begin() ;

 // put the message to the output queue - returns the correlator
 String outboundCorrel = getOutboundMsgHome().put(theCopyOrKeyStr) ;

 // commit the transaction currentTransaction.commit(true) ;

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

177

Figure 56: Sending a message using TMOutbound

The code for getOutboundMessageHome() in the previous code sample is found in the
following code sample. This code follows the standard recipe for locating a home. See the PDC
source code for the definition of the method getSSWFactFinder() used in the following code
sample.

private com.ibm.IMessageHome.OutboundMessageQueue getOutboundMsgHome()
{
/**
 * This method will locate the Home for the TMOutbound class
 * It will use a server-scope-widened server based on the current
 * serverName to locate that home.
 * @return com.ibm.IMessageHome.OutboundMessageQueue
 */

 // local variables
 // temp CORBA object
 org.omg.CORBA.Object obj = null ;

 try {
 if (iOutboundMsgHome == null) {
 obj = getSSWFactFinder().
 find_factory_from_string("TextMessage::TMOutbound.object interface") ;

 iOutboundMsgHome =
com.ibm.IMessageHome.OutboundMessageQueueHelper.narrow(obj) ;

 }
 }
 catch (Exception exc) {
 }

return iOutboundMsgHome ;
}

Figure 57: Getting the Outbound Message home

To use the TMInbound message object, a key helper is created and initialized with data
describing the message to be retrieved, such as what queue to look on and what message
correlator to look for, if any. The key helper is stringified and passed to the getUsingKeyString()
method on the inbound message home. The code for locating the inbound message home,
getInboundMessageHome(), can be found in the PDCSession application test component
business object provided with the Integration Framework.

Here is an example of how to receive a response message that is correlated to the message sent in
the preceding code snippet, all using the TMInbound message object. Additionally this code
waits up to a maximum time limit for the response message and throws an exception if no
message arrives in the allotted time.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

178

 // wait for the response – ListItemBOD
 // key for TMInbound
 TextMessageKey.TMInboundKey inKey =
TextMessageKey.TMInboundKeyHelper._create() ;

 // set queue name to access for message
 inKey.queueName(replyToQueue) ;

 // ensure correlator key is set from the outbound message
 inKey.correlatorKey(outboundCorrel) ;

 // get the Key in byte[]
 theCopyOrKeyStr = inKey._toString() ;

 // get the ExtendedInboundMessageQueue
 IextendedMessagingModule.ExtendedInboundMessageQueue inHome =
IextendedMessagingModule.ExtendedInboundMessageQueueHelper.narrow(getInbo
undMsgHome()) ;

 // Start while loop
 // If message is received, break out of the while loop
 final int maxWait = 120000 ; // upper limit for cumulative wait time
 final int waitIncr = 500 ; // wait increment
 int cumulativeWait = 0 ; // track wait time so far

 while (true) {

 // wait and check for time limit
 try { Thread.sleep(waitIncr) ; } catch (InterruptedException ie) { } ;
 cumulativeWait += waitIncr ;
 if (cumulativeWait > maxWait) {
 throw (new com.ibm.IMessageHome.ImessageNotFound()) ;
 }

 try {

 // begin transaction
 currentTransaction.begin();

 // get the message
 obj = inHome.getUsingKeyString(theCopyOrKeyStr) ;
 inMsg = TextMessage.TMInboundHelper.narrow(obj) ;

 // convert message byte array to a string
 msgString = new String(inMsg.messageData()) ;

 // commit the transaction
 currentTransaction.commit(true) ;

 } // end try

 catch (com.ibm.ImessageHome.ImessageNotFound nm) {
 // No message in the queue
 currentTransaction.commit(true) ;
 logCat.warn("PDCSessionAO-" + location() + "::getEnterprisePartsList::No more

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

179

messages to process") ;
 } // end catch ImessageNotFound
 catch (Exception exc) {
 // commit the transaction
 currentTransaction.commit(true) ;
 } // end catch Exception

 } // end while

Figure 58: Receiving a correlated message using TMOutbound

When the TMMessage application is deployed as part of another application, it will be necessary
to configure in SMUI two containers relating to MQSeries for the application. Using the
PDCSession component as an example, the containers are located in SMUI under:

Management Zones -> PDCSession Zone -> Configurations -> PDC Session Configuration -
> RDB Connections.

The containers are called MQInboundContainer and MQOutboundContainer and correspond
to the TMInbound and TMOutbound objects respectively. To configure the containers for the
application, right-click on the container name and select Properties. Then for the database name
and open string, fill- in the name of the queue manager that the TMInbound and TMOutbound
objects will use in the application.

Note: The application component is restricted to using just one queue manager for
incoming messages and one for outgoing messages (they can be the same queue manager).

Also, when the TMMessage application component is deployed as part of another application
such as the PDCSession component, it will be necessary include two additional application
components, IMQAAServices and iDXAAAServices, when configuring the server for the
application in SMUI.

5.3.3.2.1 Message Listener

The message listener is a program that monitors an initiation queue for messages and takes
action when a message arrives. The action taken could be to send another message somewhere,
to execute a program, to invoke a method on a CORBA object, or all of these and more. Any
action that can be programmed is possible. Generally, a message listener is associated with an
application; that is, they are usually application specific. The trigger monitor provided with the
IF application test components is associated with the PDC component. When a message arrives
on the initiation queue monitored by the trigger monitor, the monitor invokes the
messageReady() method on the PDCSession object, which is part of the PDC application.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

180

To use a trigger monitor, one defines the initiation queue to be monitored and configures
MQSeries to put a trigger message into the initiation queue when conditions the developer cares
about are satisfied, e.g., when a message arrives on one of several queues and needs to be
processed. Once the initiation queue is defined, any other applications that the trigger monitor
communicates with need to be started, and finally the trigger monitor itself needs to be started.
Then it will wait for a trigger message, and take the defined action(s) when one appears on the
initiation queue.

The trigger monitor provided as part of the Integration Framework test components can be used
as a template or starting point for writing a trigger monitor. IBM also provides a sample trigger
monitor in the MQSeries distribution, which will be extendable for the users needs. Since
MQSeries can be configured so that multiple queues are triggered and send a trigger message to
a given initiation queue, a single trigger monitor application can “handle” trigger messages for
multiple input queues.

In addition to monitoring an initiation queue for trigger messages, the trigger monitor supplied as
part of the Integration Framework also is responsible for registering publisher and subscriber
Component Broker application components with the MQSeries message broker. To do this, the
trigger monitor reads an initialization file that contains instructions on which applications should
be registered as publishers and/or subscribers. The registration occurs only at startup of the
trigger monitor; then the trigger monitor falls into a loop that monitors the initiation queue for
trigger messages.

The C++ trigger monitor provided as part of the Integration Framework test components uses the
pub/sub helper routines defined in the header file pubsub.h provided as part of the Integration
Framework. These routines simplify the generation of the specially formatted control messages
to be sent to the message broker to register and deregister publishers and subscribers.

The C++ trigger monitor provided as part of the Integration Framework test components uses an
initialization file to determine what registrations or de-registrations of publishers or subscribers
to make and where to send them. A sample initialization file is show below. Lines beginning
with ‘#’ are comments and ignored by the trigger monitor. The file is divided into stanzas by
tokens enclosed in square brackets. The tokens provide the action that the trigger monitor is to
perform and the subsequent six lines that are not a comment provide information about the topic
to register and the queue and queue manager to register and where to send the control message.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

181

#------------------------------
[registerPublisher]
EXCEPTIONS. If the next non-comment line matches the location code we are given at startup, skip
this stanza.

TOPIC. The next non-comment line is the topic to register.
SYNCINVENTORY
STREAM. The next non-comment line is the stream to register. <location> is substituted with the
location code
we are given at startup.
IF.<location>.DEFAULT.STREAM
QMGR. The next non-comment line is the queue manager to register.

QUEUE. The next non-comment line is the queue to register

BROKER QUEUE. The next non-comment line is the queue to which we put the formatted control
message.
SYSTEM.BROKER.CONTROL.QUEUE
BROKER QMGR. The next non-comment line is the queue manager to which we put the formatted
control message.
QMR1C1
#------------------------------
[registerSubscriber]
EXCEPTIONS.
ENTERPRISE
TOPIC
SYNCINVENTORY
STREAM
IF.ENTERPRISE.DEFAULT.STREAM
QMGR
QMR1A1
QUEUE. <location> is substituted with the location code we are given at startup.
PDC.<location>.SYNCINVENTORY.RECEIVER
BROKER QUEUE
SYSTEM.BROKER.CONTROL.QUEUE
BROKER QMGR
QMR1C1
#------------------------------

Figure 59: Example of Trigger Monitor Application Code

5.3.4 Design Issues Concerning Deployment

5.3.4.1 Application Design to Support Workload Management
Applications expecting high-volume use should consider using workload management.
Workload management (WLM) is the discipline of defining, monitoring and actively managing
work in the distributed network. In Component Broker, work is the dispatch, routing, and receipt
of requests between objects in the distributed network and their eventual execution within a
Component Broker application server. When more clients use an application, the amount of
work increases, and the load on the servers increases.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

182

Clients normally locate resources at a pre-configured server location, perhaps a named server or
the server running on their local host. Fixing the relationship between the client and server is a
problem for scalability in large enterprises. When multiple servers exist, which could potentially
service a client's request, it is not desirable to force the client to go to one fixed server. The
workload distribution mechanism, part of WLM, allows the ORB to dynamically allocate an
application server to process a request. The goal is to minimize client request response times and
maximize server throughput by reducing load imbalance. This can be achieved by locating
resources at a workgroup scope and allowing the choice of an appropriate, active server to be
determined by the ORB.

A home is an excellent example of a workload manageable object because it is often one of the
first types of objects to be accessed remotely. Many client applications will locate a home for a
required business object, perhaps using a factory finder, and then use that home to find or create
that business object on the home's server.

It is just as desirable to distribute the work involved in finding, creating, and processing queries
for business objects as it is for the work involved in subsequent operational requests. For objects
that only need a default home implementation, the developer can select one of the supplied
workload manageable homes. Specialized home can also be configured as a workload
manageable home by using a workload managing container in the same way a non-workload
managed container would be used.

For more information on using the workload management features of Component Broker, see the
Component Broker online help for ‘workload management’.

Application designers should be careful not to create “bottlenecks” in workload managed
applications. Just because there is a workload-managed home does not mean that the developer
has done all they can. For example, if an application uses a WLM home and non-UUID keyed
objects and routes control of client requests through one of several non-UUID keyed objects
based on the value of the non-UUID key, it is possible under high load to have a bottleneck in
each of the non-UUID keyed objects, and it is possible that the non-UUID keyed object will
force serialization of the incoming requests.

One way around the bottleneck is to define and have clients create WLM objects, which have a
UUID as their primary key. In this case, when a client looks up and/or creates a WLM object
with a UUID key, it is assured that the client will get its own WLM object in the application
server and hence its own thread of execution rather than being serialized through one instance of
a non-UUID keyed application object. So storage space for the extra UUID keyed objects is
traded for throughput speed. For high performance, it is recommended that use of WLM UUID-
keyed objects extend as far back toward the data store as possible so that each client has its own
thread of execution in a chain of UUID keyed objects reaching nearly to the data store. This
approach is at the other end of the speed vs. space tradeoff spectrum than is the use of a non-
UUID keyed object as a serializing gateway to back end services.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

183

Use of workload management in the application server may have implications for any inter-
component or inter-application messaging that is being performed. Workload management
clusters several application servers into one large virtual server from the point of view of the
client application. In order for all instances of the server group comprising the large virtual
server to have the same view of MQSeries queue configurations, MQSeries clustering of queue
managers co-residing on the application servers may be required.

5.3.2.2.8 Example of workload management deployment

The following diagram illustrates a workload-managed configuration from end to end. Moving
from the bottom of the diagram to the top, we will describe each layer.

Web Seal Juntions
Web Seal Junctions are set-up for Stateless (Servlet) applications; the initial request by a user for
an application will be routed to the Web Server with the best response. As a stateless junction,
subsequent requests by that user for that application will be routed to the Web Server with the
best response. Junctions for Stateful (Servlet) applications can also be configured resulting in use
of cookies to identify web server affinity. As such, once a Web Server has been established for a
user of an application, subsequent requests by that user for that application will be routed to the
same Web Server.

Stateless Web Seal Junctions
Using stateless Web Seal junctions to work load manage web server and Servlet processing
requires that the WebSphere Servlet Engine be configured to persist session objects. This allows
continuation of a session on a different Servlet engine.

Servlets
Servlets are multi- threaded, with each new user of a Servlet getting a new thread. Each Servlet
finds an associated session application object/session bean in the appropriate server group in CBs
namespace.

Application Requests
For requests to an application in a work load managed server group, requests will be to an
application on one of the servers in the server group as determined by the server group work load
management algorithm in effect.

Computational-intensive Business Objects
“Computational- intensive” business objects (that would significantly impact performance if the
same instance were used by all clients of this object) are (transient) configured such that each
new client of an application object /session bean gets a new instance.

Back End Databases
Different database instances (e.g. one supporting Base_1 and another supporting Base n,) of an
application type may have separate back-end databases. However, Instances of different
application types can have the same or different back-end databases

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

184

Figure 60: Illustration of Workload Managed Configuration

CB HOST nCB HOST 1

Server
Group:

PDC
Base3

Server
Group:

PDC
Base1

Database Host

Parts-3PDC-3

Parts-1PDC-1

Web Server 1 Web Server n

Server
Group:

PDC
session

Server: PDCsession1

PDC
session AO

-- applications --

Servlet Engine

PDC
Servlet

Servlet Engine

PDC
Servlet

USER 1 USER 2 USER 3 USER n

Local
Director

WebSeal 1 WLM

Web Server Web Server

WebSeal nWLM

 ROUTING

Server: PDCbase3.1

PDC Parts

-- applications --

PDC
AO

Server: PDCbase1.1

PDC Parts

-- applications --

PDC
AO

Server: PDCbase3.2

PDC Parts

-- applications --

PDC
AO

Server: PDCbase1.2

PDC Parts

-- applications --

PDC
AO

Server: PDCsession1

PDC
session AO

-- applications --
WLM

WLM

WLM

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

185

5.4 Data

5.4.1 Overview
The Data layer consists of the components that are directly related to providing persistence for
business data. But note that some data layer components, depending upon their function, may in
fact not persist their data. The data layer also provides services for implementing relationships
between objects and/or components and for performing queries on objects. The components that
execute in the data layer do not have any user interface components, as they have no
responsibility to interact with the user.

While the data layer is depicted as separate from the Business Logic layer, this is depiction is
from a logical standpoint. In practice it will be seen that some of the data components of an
application are physically co-located with their associated business layer components. While
Business Logic components will include data items, they will generally have an associated data
object that manages the data, including any persistence of the data. It is the data object that
provides the interface to back-end data stores.

5.4.2 Service Use
The services provided by the Integration Framework to a data layer component include:

Table 24: IF Data Layer Component Services
Services Functionality

Application Server Containers
(IBM WebSphere for CORBA,
EJB components)

From a data perspective, the containers provide for data
persistence and data transactions.
Reference: WebSphere Application Server, Introduction
to WebSphere Application Server
WebSphere Application Server Enterprise Edition
Component Broker, Programming Guide
ImanagedCollections chapter in the Managed Object
Framework of: WebSphere Application Server Enterprise
Edition Component Broker, Programming Reference

Object Transaction Service
(OTS)

Provides the overall transaction service for all component
transactions.
Reference: Transaction Service chapter of:
WebSphere Application Server Enterprise Edition
Component Broker, Advanced Programming Guide
CosTransactions chapter in the Managed Object
Framework of: WebSphere Application Server Enterprise
Edition Component Broker, Programming Reference

Java Transaction Service (JTS)

Provides explicit transaction service to Java components.
Reference: Java Transaction Service Specification,
Version: 1.0, December 8, 1999
Java Transaction API Specification, Version: 1.0.1, April
29, 1999

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

186

Services Functionality
29, 1999

Concurrency Service

Provides the ability to explicitly “lock” resources to
prevent corruption of resource updates resulting from
simultaneous updates of the same resource by multiple
components.
Reference: Concurrency Service chapter of:
WebSphere Application Server Enterprise Edition
Component Broker, Advanced Programming Guide
CosConcurrencyControl chapter in the Managed Object
Framework of: WebSphere Application Server Enterprise
Edition Component Broker, Programming Reference

Query Service

Provides the ability to perform structured queries on
objects.
Reference: Query Service chapter of:
WebSphere Application Server Enterprise Edition
Component Broker, Advanced Programming Guide
CosQuery, CosQueryCollection, Iextended Query in the
Query Service chapters and Object-Oriented SQL
chapter of: WebSphere Application Server Enterprise
Edition Component Broker, Programming Reference

JDBC, ODBC Drivers
(For Oracle 8i, IBM DB2)

Provides the ability for a Java or C/C++ object /
component to manage its own persis tence.
Reference: Oracle8i JDBC Developer's Guide and
Reference, Release 8.1.5,P art No. A64685-01
IBM DB2 Universal Database Enterprise – Extended
Edition, Quick Beginnings, Version 6, SC09-2832-00

Relational Databases
(Oracle 8i, IBM DB2)

Provides the back-end data store for object / component
persistence. Can also be accessed using SQL and native
product client services.
Reference: Oracle8i Concepts, Release 2 (8.1.6),
December 1999, Part No. A76965-01
IBM DB2 Universal Database Administration Guide, Design and
Implementation, Version 6, SC09-2839-00

For details of these services refer to the manuals and documents identified as references.

5.4.2.1 Data Objects and Persistence
Relative to application development in the area of data, two primary objects are key. They are
the data object and the persistent object. These objects are not accessible from clients and are
specifically associated with a particular business object.

Data Object (DO) - that manages the essential state of the business object including the
persistent storage of this data. Only one data object can be used to map a business

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

187

object’s data to database entities and/or attributes. The data object isolates the business
object from having to:

• Know which of many data stores to use to persist its state.

• Know how to access the data store.

• Manage the data store access.

Data objects are only applicable to managed objects such as the EJB entity beans or
CORBA managed object. The data object uses the associated persistent object to persist
the data in the data store mechanism (relational database for the current Integration
Framework).

The data object, if required, can implement data specific rules. These rules are actually
implemented by the DO Implementation object that provides the actual method
implementations.

Persistent Object (PO) - Assists the data object in storing the business object’s essential
state to a specific data store. It encapsulates the embedded SQL statements needed to
insert, update, delete, and retrieve the essential state to and from the data store. It
provides the mapping of data from code format to data store format and maintains a key
that is used to locate a corresponding entry in the data store.

The persistent object contains the same attributes as the data object; so the mapping from
data object to persistent object is very straightforward. By delegating the (SQL)
communication with the data store to persistent object, the data object code can be kept
understandable and clean. It also allows the same data object to be used with different
back-end data stores, as a different persistent object can be provided for different data
stores.

The relationship of these objects to the business object they support is shown by example in
Figure 61: Business, data, and Persistent Object Relationships. The objects illustrated are from
the Integration Framework Parts Data Collection Test Component. Also refer to the WebSphere
Application Server Enterprise Edition Component Broker, Programming Guide for details of
developing these objects using the Integration Framework supported WebSphere application
server.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

188

Figure 61: Business, data, and Persistent Object Relationships

Developers employing the current Integration Framework Application Server (IBM WebSphere
Enterprise Edition) can utilize the associated development tools (Object Builder) to create these
objects. Refer to the WebSphere Application Server Enterprise Edition Component Broker,
Application Development Tools Guide for details. For developments not employing these tools,
the objects would need to be created “by hand”.

In an enterprise as large and varies as GCSS-AF, there will be cases where a business object that
provides a single interface to a group of closely related objects. Some of these objects may
include object utilizing Legacy databases, data residing in different databases or even database
types (e.g. Oracle, DB2). But as previously identified, a business object can only have a single
associated data object the implications of which include only a single database and a single
database type. To address this situation the concept of a composite business object is defined.

5.4.2.1.1 Composite Business Object
A Composite Business Object is a business object that provides a single interface to a closely
related group of objects. In addition to providing its own methods and attributes, the composite
business object can also expose any or all methods of the member objects. In this fashion the
composite business object can include constituent objects of different implementation languages
or backed by different databases or database types.

Part
itemDescription : string
manufacturer : string
ownedByPDCId : long
partNumber : string
quantity : long
stockNumber : string

setItemDescription()
getItemDescription()
setManufacturer()
getManufacturer()
setOwnedByPDCId()
getOwnedByPDCId()
setPartNumber()
getPartNumber()
setQuantity()
getQuantity()
getStockNumber()
create()
remove()

PartDO
itemDescription : string
manufacturer : string
ownedByPDCId : long
partNumber : string
quantity : long
stockNumber : string

itemDescription()
itemDescription()
manufacturer()
manufacturer()
ownedByPDCId()
ownedByPDCId()
partNumber()
partNumber()
quantity()
quantity()
stockNumber()

PartPO
itemDescription : string
manufacturer : string
ownedByPDCId : long
partNumber : string
quantity : long
stockNumber : string

itemDescription()
itemDescription()
manufacturer()
manufacturer()
ownedByPDCId()
ownedByPDCId()
partNumber()
partNumber()
quantity()
quantity()
stockNumber()

Business Object
(only object exposed
to other components)

Persistent Object
(performs actual store
of data to database)

PartDOImpl

Data Object
(provides interface
for business object)

Could have different DO
Implementations for
different requirements
but maintain same
interface.

Could implement data
specific rules within DO
Implementation if
necessary.

manage
essential
state

perform
actual data
store

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

189

In employing a composite bus iness object, the following advantages and disadvantages should be
considered.

Advantages:
• Simplifies client interface to the Business Logic.
• Reduces the number of remote method calls.
• Provides the means for one business object to access more than one data store (database).

Disadvantages:
• Requires extra coding in order to integrate and properly initialize the constituent objects.
• Activating a composite business object may needlessly activate constituent objects.

Refer to the Components Working Together chapter of the WebSphere Application Server
Enterprise Edition Component Broker, Application Development Tools Guide for details of
implementing a composite business object using the Integration Framework supported
WebSphere application server(s) and associated development tools.

5.4.2.1.2 Object Relationships
This section provides a summary for implementation of object relationships. Generally this will
be implemented through the data object implementation. The data object implementation for a
component that contains a reference to another component requires getters and setters that are
more complex than those that implement attributes with simple mappings to backend resource
managers such as SQL tables.

Refer to the Assembling and Deploying Components chapter of the WebSphere Application
Server Enterprise Edition Component Broker, Programming Guide for details.

Top-down Versus Bottom-up Relations
The component's business object interface defines references, but does not know how the
relationship is implemented. This is a key part of the encapsulation provided by the MOFW. In
this section, implementation strategies and how they appear on the data object implementation
are introduced.

There are two basic strategies that are applied to implementing object references that appear in
the business object:

Top-down -This approach allows alteration or definition of a database schema that
underlies a component that has references to other components.

Bottom-up -This approach implies preservation of an existing schema.
While there are times when the object resolution approach characterized as bottom-up
can be used for new top-down applications, the inverse is not true. The two strategies
apply equally well to cardinality-1 and cardinality-n types of relationships.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

190

Top-down Customizations
The top-down approach is characterized by the presence of a string in the database table of the
containing object. This string contains information that the data object can use to produce the
object reference required by the business object interface.
There are many different combinations of CORBA and Component Broker abstractions that
could be used to map object references. The following useful patterns have been identified by
the programming model:

Stringified Object Reference -Stores the stringified object reference as a variable length
string. It is the simplest form in structure and the largest in size. Multiple references to
the same object or other objects in the same application adaptor environment store
duplicate prefix data.

Object Name -Stores a Naming Service name of an object as a variable length string.
This is much shorter than the SOR. Only objects that are named in the Naming Service
can be referenced using this pattern.

Home Name and Key-Used for objects that are not named in the Naming Service.
Instead of the object name, it stores the name of the object home and its primary key
within the home. The stored representation for this pattern is a pair of variable length
strings: the home name and the stringified primary key.

Queryable Collection Name and Query String -Used for objects that are contained in a
queryable home or named collection. It stores a pair of variable length strings: the
collection name and a query string that uniquely returns the object.

Bottom-up Customizations
In the bottom-up case, in addition to knowing that the business object interface has a getter and a
setter, there is also a known value in an existing database or other resource to which the data
object is mapped. It is most probably a foreign key, a value that can be used, along with other
Component Broker system function, to render the object reference which is being requested in
the upper level (business object) interface.

FindByPrimaryKeyString -Using this pattern, a value (or values) from the underlying
resource manager is used to formulate a key. The home for the kind of object being found
is determined. The key is then used to do a findByPrimaryKeyString on the object.

Query -This pattern leverages the Query Service. In this case, the foreign-key is used as
the basis to formulate a query into the table that contains the data for the referred objects.
The result set can then be used to return values to the business object interface. This
pattern works for both 1-to-1 and 1-to-n relationships with various exception handling
required.

1-1 Relationships
For the top-down case, using the handle-pattern that is supported by Object Builder is
recommended. The handle concept of Component Broker encapsulates the actual pattern that is

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

191

used to store the object reference. From this perspective, each 1-to-1 relationship in the top-
down case stores a handle.

For the bottom-up case, Object Builder supports the foreign key pattern suggested and described
previously. This is the recommended pattern.

1-n Relationships
For the top-down case, two patterns are supported by Object Builder for 1-n (one-to-many)
relationships. Conceptually, they involve either keeping a reference collection of the object
relationships or resolving the object rela tionships using the Query Service.
For the bottom-up case, the solution for 1-n relationships is to use the Query Service.

Summarizing Relationship Implementations
The patterns previously described are summarized in the following table.

Table 25: Cardinality Example

 Top-Down Bottom-Up
Cardinality-1 Store the reference

Uses handles support to
store a stringified version of
the object reference

Foreign key
Uses
findByPrimaryKeyString to
locate referenced object

Cardinality-n Reference collection
Uses handles support to
store a reference to a
collection that contains the
"object relationship"

Foreign key
Uses query service to return
the "object relationships"
Requires a 1-to-1 reference
to implement the other way

Additional Customizations
Additional data object customizations are possible. If the customization options that are optimal
for a given relationship are not supported directly, it is possible to alter the mapping patterns that
are used in such a way that Object Builder round tripping is still preserved. This is done through
the use of a mapping helper.

Mapping Helpers
A mapping helper is a class that contains mapping methods. Mapping methods provide the
conversion between the attribute types of the two objects. You can either use the mapping
helpers provided by Object Builder, or you can define your own.

5.4.2.1.3 Container Managed Persistence
Just as the Integration Framework (provides and) recommends the use of application servers for
hosting GCSS-AF applications and components, it also recommends delegation of the
persistence business (object) data to the containers provided by the application server. For both
Enterprise Java Beans and CORBA Managed Objects, the containers in which they “execute”
can be configured to manage the persistence to the back-end data stores (databases). By doing so,

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

192

much of the tedious implementation “work” to make and manage requests to the back-end data
store is eliminated.

Refer to the WebSphere Application Server Enterprise Edition Component Broker, System
Administration Guide for details of configuring container-managed persistence using the
Integration Framework supported WebSphere application server.

5.4.2.1.4 Object / Bean Managed Persistence
While the Integration Framework supports object or bean managed persistence, it does not
recommend its use. Object or bean managed persistence can significantly reduce the
(configurable) flexibility of using a component with different transaction policies, caching
policies, etc. In addition, it places a greater burden on the developer to manage the persistence of
the object and can have an impact on component portability. Object or bean managed persistence
requires the use of an ODBC or JDBC driver in order to access the back end data store
(database).

5.4.2.1.5 Caching Considerations
Caching of data relative to a distributed architecture is highly dependent upon the application
server that is employed. As such, caching will be discussed in relative to the specific application
servers supported.

5.4.2.1.5.1 IBM WebSphere Enterprise Edition Cache Capabilities
The Cache Service enhances concurrency and performance by supporting optimistic and
pessimistic caching of data. In optimistic caching, frequently used data is cached in the memory
of the Component Broker server and not reread from the database on each transaction. Cached
data is invalidated based on a time-out value. Pessimistic caching is used when the application
must be guaranteed current data and uses a higher degree of isolation to guarantee that
transactions can be serialized. The caching mode is established through use of the WebSphere
Enterprise Edition System Management User Interface on each object type.

The Integration Framework employing the IBM WebSphere application server provides
significant flexibility relative to caching data. The Integration Framework allows caching to be
configured for the business object, the data object, and/or the underlying database services
themselves. It is up to the application developer to determine the applicability of caching to the
specific application and its components as well as where and how caching is best employed.
Refer to the Cache Service chapter of the WebSphere Application Server Enterprise Edition
Component Broker, Advanced Programming Guide for details of utilizing caching services using
the Integration Framework WebSphere EE supported application server(s). Refer to the Cache
Service chapter of the WebSphere Application Server Enterprise Edition Component Broker,
System Administration Guide for details of configuring caching services using the Integration
Framework supported WebSphere application server.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

193

5.4.2.2 Concurrency Service
The Concurrency Service is intended primarily for use in a transactional environment. It consists
of a set of interfaces that allow an application to coordinate access by multiple transactions or
threads to a shared resource. When multiple transactions or threads try to access a single resource
at the same time, any conflicting actions are reconciled so that the resource remains in a
consistent state.

Note: However the use of Concurrency Service by user application code within the
application server-programming model is limited. This is due to the application server
framework already providing the necessary resource-level locking and caching to
coordinate resource access by multiple transactions or threads.

Refer to the Concurrency Services chapter of the WebSphere Application Server Enterprise
Edition Component Broker, Advanced Programming Guide for details of configuring and
utilizing concurrency services us ing the Integration Framework supported WebSphere
application server.

5.4.2.3 Query Service
The Query Service enables you to find objects in an application server collection based on a set
of conditions described with an object-oriented structure query language (OOSQL). The OOSQL
enables you to describe complex search criteria. It is a extension of SQL with features for
handling object collections, object attributes, and methods in query statements. The Query
Service can return a list of object references, or it can return a list of object attribute values. The
Query Service takes advantage of search capabilities and indexes in the underlying database to
make searching for objects efficient.

Refer to the Query Services chapter of the WebSphere Application Server Enterprise Edition
Component Broker, Advanced Programming Guide for details of configuring and utilizing query
services using the Integration Framework supported WebSphere application server.

5.4.2.4 Transaction Service
The Transaction Service enables programmers to implement transactions by using standard
object-oriented interfaces in a distributed environment. Application servers use the Transaction
Service to ensure that each application has correctly grouped the updates in the transaction so
that the data is always updated consistently. If the application uses the Transaction Service in
conjunction with the Concurrency Service, these updates are not affected by updates being
performed for other tasks.

Refer to the Transaction Service chapters of the WebSphere Application Server Enterprise
Edition Component Broker, Programming Guide and WebSphere Application Server Enterprise
Edition Component Broker, Advanced Programming Guide for details of configuring and
utilizing the Transaction Service using the Integration Framework supported WebSphere
application server(s).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

194

The following paragraphs are provided to highlight key areas relative to transaction processing.
They are not intended to eliminate the need to utilize the documentation identified above.

Top-level and Flat Transactions
The most common type of transaction used by applications is the top-level transaction. The first
transaction created by an application is always a top- level transaction.
The CORBA specification also describes another type of transaction, called a sub-transaction,
often referred to as a nested transaction. The Integration Framework provided Transaction
Service does not currently support sub-transactions.

Lifetime of a Transaction
Applications use transactions to group related updates to data so that all or none of the updates
occur. Typically, an application:

• Starts a transaction.

• Makes the updates and associates them with the transaction.

• Ends the transaction.

When an application ends a transaction, it can request that the transaction is either rolled back or
committed. If the application requests a rollback, all of the updates are undone.
If the application requests that the transaction is committed, the Transaction Service checks that
each object involved in the transaction is able to make its updates permanent. If all objects
indicate that they can, the transaction is committed. Otherwise, the updates are undone just as if
the application requested a rollback.

Transaction Scope and Context
The Transaction Service allows multiple objects to participate in a transaction. These objects
can be distributed across multiple operating system processes and threads and each object can be
working with more than one transaction at once.

To control which transaction an object is working on at a particular point in the code, the
Transaction Service provides a transaction context. This is a collection of Transaction Service
objects that represents the transaction.

The scope of a transaction is made up of all the locations within your application where the
transaction context is in use. In general, the scope of the transaction increases over the lifetime
of the transaction as the transaction context is passed from object to object.
The Transaction Service provides two mechanisms for passing transaction context:

• The most common method is implicit propagation, where the transaction context is
associated with a thread and is available to each method called within this thread that
understands transactions. If a remote method is called, the Transaction Service

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

195

automatically passes the transaction context to the thread in the remote server process
where the method is run.

• An alternative method is for the application to pass the CosTransactions::Control

reference as an explicit parameter on a method call. The recipient method could then
resume the context on its thread of execution. This is called explicit propagation. The
Component Broker Transaction Service implements checked behavior that disallows
resumption of an explicitly propagated Cont rol if that Control has been propagated
between execution environments. Passing a Control between threads of the same
execution environment is allowed.

Transaction Retry Limits
The Transaction Service can be configured to limit the number of times it attempts to contact a
server during the two-phase or one-phase commit. If this limit is reached, the Transaction
Service uses a pre-configured value as the action taken by the unavailable objects.

Transaction Time Limits
An application can set a time limit for its transactions. This time limit applies in all operating
system processes and threads that are part of the transaction’s scope. It is specified as the
transaction is started and runs until the call is made to stop the transaction.
When the time limit is reached, the transaction is said to have timed out and if the call to stop the
transaction has not been made, the Transaction Service rolls back the transaction.

Container Managed Transactions, non-EJB Components
To enable the container in which a component is deployed to manage the transactions for the
component, it is necessary to configure the transaction policy for the container appropriately.
The Integration Framework supported WebSphere application server provides the following
configurations if a method of the component is invoked without a transaction being active:

• Throw exception

• Begin a new transaction

• Ignore condition

Container Managed Transactions, EJB Components
A transaction attribute is configurable per the EJB specification that defines the transactional
manner in which the container invokes enterprise beans. The current Integration Framework
supported WebSphere application server supports this for the bean as a whole; individual
transactional attributes for each method is not supported. The EJB specification identifies the
following configuration parameters:

• TX_REQUIRED

• TX_REQUIRED_NEW (WebSphere does not support)

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

196

• TX_SUPPORTS (WebSphere does not support)

• TX_NOT_SUPPORTED (WebSphere does not support if used with container managed

persistence)

5.4.2.4.1 Object Transaction Services
As can be seen from the above description, the Object Transaction Services (OTS) provided by
the Integration Framework is in fact the CORBA Services OTS. Limitations and extensions
provided by the current IF supported application server are described in the Transaction Service
chapter of the WebSphere Application Server Enterprise Edition Component Broker, Advanced
Programming Guide.

However, for applications / components implemented under the Integration Framework
supported application server, the containers in which the components are deployed should be
configured to manage the transactions..

5.4.2.4.2 Java Transaction Services
While the Java Transaction Services and the Java Transaction API are supported, they should
generally not be employed directly by applications / components implemented under the
Integration Framework supported application server. Rather the containers in which the
components are deployed should be configured to manage the transactions. For details of the
Java Transaction Services and the Java Transaction API refer to the Java Transaction Service
Specification and the Java Transaction API Specification.

5.4.2.4.3 Transactions With Legacy Systems
While the Integration Framework provides the services to implement many Legacy system
interfaces requiring transactions, this has not been a capability with which the Integration
Framework development has been tasked. The Integration Framework supported WebSphere
application server provides procedural application adaptors to interface to existing systems and
COTS packaged systems. The Procedural Application Adaptor (PAA) of Component Broker
enables Component Broker applications to access procedural resources such as CICS, IMS, or
SAP.

Component Broker provides the CICS / IMS / SAP Application Adapter that is based on its
Procedural Application Adaptor infrastructure. It consists of both a development environment
within Component Broker, as well as a run-time environment. The run-time environment
integrates the Component Broker services such as transaction capability with the various
technologies to communicate with these procedural systems like Communications Server, CICS
Universal Client, SAP Connector, and Host On-Demand.

The actual interface with the Legacy system that would utilize the Procedural Application
Adaptor should be incorporated in an Interface Component that provides the GCSS-AF
component view (and interface) to other GCSS-AF components.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

197

For details of the Procedural Application Adaptor WebSphere Application Server Enterprise
Edition Component Broker, Procedural Application Adaptor Development Guide.

5.4.2.4.4 Messaging in the Transaction
Transaction scope relative to the Integration Framework Message services is the commit of a
message to a queue (for a put) or the commit of the removal of a message from a queue (for a
get). What this means is that when a message is “sent” to another component inside of a
transaction, the action that is contained within the transaction is the actual queuing of the
message on the specified queue; until the commit the message is essentially staged. If a rollback
is requested than the message is never queued. Conversely, when a message is retrieved from a
queue inside of a transaction, the action that is contained within the transaction is the retrieval of
the message from the specified queue but the message is not removed from the queue until the
commit occurs. If a rollback is requested than the message is never removed from the queue.
Note that the actual delivery of the message from one component to another is not included in
the transaction scope.

Message sends to and gets from components implemented in the Integration Framework
supported WebSphere application server are accomplished through a Message Adaptor
(container) which manages the transaction with the underlying messaging capability (MQSeries).

5.4.2.4.5 Inter- Application Transactions
GCSS-AF has specified that the primary mechanism of inter-application data interchanges be
accomplished using messaging to send BODs. As such, the applicability of a two-phase commit
protocol is not provided. However, modern application design paradigms emphasizes loose
coupling between applications and even components of an application and typically do not
require this type of protocol. Where necessary, design patterns exist that can provide a similar
end result. Figure 62: Example Transaction Emulation Across Components illustrates one
possible way of achieving this.

For those cases where a two-phase commit is absolutely necessary, the Integration Framework
supports method level invocation passing a BOD as a parameter. However, if employed it should
be restricted to transactions only within a local-area network and not a wide-area network.

5.4.2.5 Database Access Services
Container Managed Persistence
The containers, provided by the Integration Framework supported WebSphere application server,
provide database access for the components which it contains.

JDBC
JDBC drivers are available for components not employing container managed persistence to
access data store.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

198

SQL
SQL can be used by components operating outside of the Integration Framework supported
WebSphere application server.

5.4.2.6 Security
Data Object Access
As Data Objects (and Persistent Objects) are co- located within the same component as the
business object for which it manages data persistence and provides no exportable interface, there
is no requirement for securing access to the data object.

Database Access
For containers that access a specific database, a userid/password is configurable when the
component is deployed to provide authorization checks by the database.

Fine-Grained Access Control
While the Integration Framework does not currently provide validated fine-grained access
control patterns and approaches, mechanisms are available by which this can be implemented
where the need arises. This includes the ability to provide a userid or role attribute with each data
object and have data object implementation test retrieved objects userid or role attribute against
the requesting user or user role.

5.4.3 Communication Between Layers

5.4.3.1 Vertical

5.4.3.1.1 Presentation
Servlet and Data Object
For presentation components that need to access data (as objects) directly, a data object can be
developed as either a JavaBean or simply as a class and have the access to the back-end data
store accomplished by the data object using either JDBC or SQL. The communications between
the servlet and data object would simply be method invocation using parameters as required.

Servlet and Relational Database
This should be accomplished as identified above for Servlet and Data Object.

5.4.3.1.2 Business Logic
Business Object and Data Object
Business Object access data objects as a “local object”. For cases where caching is configured
for a business object, the business object must provide syncToDataObject and
syncFromDataObject methods to be invoked by the data object as needed. The data object
(through the persistent object) provides the actual access to the back-end data store.

Business Object and Relational Database

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

199

This should be accomplished as identified above for Business Object and Data Object.

5.4.3.2 Horizontal

5.4.3.2.1 Database
Data Object and Relational Database
The Data Object accesses the relational database through the persistent object that employs SQL.
For data objects outside of the Integration Framework supported WebSphere application server,
JDBC drivers, ODBC drivers, or SQL can be employed to access relational databases.

Database Replication
The Integration Framework supported relational databases provide the ability to replicate
information to synchronize database (copies).

5.4.3.2.2 Transaction Managers
Object Transaction Service objects communicate using IIOP (CORBA) to coordinate
transactions. This is a standard part of the OTS.

5.4.3.2.3 Resource Managers

The Object Transaction Service provided by the Integrated Framework can interoperate with
XA-compliant resource managers.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

201

Figure 62: Example Transaction Emulation Across Components

 : B u d g e t O w n e r : B u d g e t A p p r o v a l
 : First :

P r o p o s e d B u d g e t
 :

A p p r o v e d B u d g e t
 :

Budge tO fReco rd
 : b u d g e t B O D :

M e s s a g e T r a n s a c t i o n
 : T ransac t i on

b u i l d B u d g e t () b u i l d B u d g e t ()

a p p r o v e B u d g e t (P r o p o s e d B u d g e t)

e s t a b l i s h B u d g e t (P r o p o s e d B u d g e t)

s u b m i t B u d g e t (A p p r o v e d B u d g e t)

s e n d B u d g e t (A p p r o v e d B u d g e t , S t r i n g)

c rea te (App rovedBudge t)

b u i l d M e s s a g e (b u d g e t B O D)

r e q u e s t _ r e p l y (m e s s a g e , s e n d _ q u e u e , r e p l y _ q u e u e)

ge tRep ly ()

s tar tTransact ion()

e s t a b l i s h O p e r a t i o n a l B u d g e t (A p p r o v e d B u d g e t)

ge tMessage()

g e t C o n f i r m B O D (m e s s a g e)

c o m m i t T r a n s a c t i o n ()

c o m m i t r e m o v e s
m e s s a g e f r o m
q u e u e

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

202

5.5 Messaging Guidance

5.5.1 Message Transmission and Reception Types

Messaging systems support multiple styles of communication between applications that include
send and forget / receive, request/reply and publish/subscribe.

An application using the send and forget style sends a message to another application or list of
applications but does not expect any reply. An example is a data replication application.

An application using the receive style receives a message from another application and sends no
reply. An example is a data display terminal which accepts data and displays it on a screen.

Applications using request/reply are like client server applications where a client is making a
request from a server and expecting a reply.

Publish/subscribe is rather like send and forget except that the sending application does not
know who the recipients are. Instead the sender sends the message to a broker who manages the
subscriptions of applications that requested to receive messages. The broker decides which
subscribing applications should receive a published message by matching the subscriptions with
either the message topic information or the content of the message.9

5.5.1.1 Send and Forget / Receive

The send and forget style of messaging has a sender application which sends an outgoing
message and does not expect to receive a response message back. An example of a send and
forget messaging style is a stock update service which sends updates to a display terminal for
display to stock traders. The service sends messages and does not expect a reply back from the
display terminals.

The Integration Framework test components use the send and forget messaging style when the
EPD Wrapper sends a SyncInventory BOD to the Enterprise PDC without requesting a confirm
BOD reply.

The receive style of messaging has a receiver application which receives incoming messages and
does not send a response message. An example of a receiver message style is a data terminal
that receives updates from a master source and displays them on a monitor. The data terminal
receives incoming messages and acts on them, but does not produce a response message.

5.5.1.2 Request / Response

The request/response style of messaging has a requester application which sends a request
message and expects to receive a response message back. The responder application receives the

9 Open Applications Group Common Middleware API Specification

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

203

request message and produces the response message(s) which is sent back to the requester
application. The responder application uses information in the request message to know how to
send the response message back to the requester.10

The Integration Framework test components use the request/response messaging style when the
EPD Wrapper sends a SyncInventory BOD to the Enterprise PDC requesting a confirm BOD
reply. The Enterprise PDC processes the SyncInventory BOD and returns a confirm BOD to
the EPD wrapper.

5.5.1.3 Publish / Subscribe

With publish/subscribe messaging a publisher application publishes messages to subscriber
applications via a broker. The message published contains application data and one or more
topics strings that usually describe the data. A subscribing application subscribes to topics
informing the broker which topics it is interested in. When the broker receives a message from a
publisher it compares the topics in the message to the topics in the subscription from subscribing
applications. When they match the broker forwards the message to the subscribing applications.11

The Integration Framework test components use the publish/subscribe messaging style when the
Enterprise PDC publishes part update information to the subscribing Base PDCs.

5.5.1.4 Synchronous Communications Emulation

With synchronous communications emulation messaging an application sends a message to a
receiving application and waits for the response message to be received. This is really a kind of
request / response messaging in which the sender simply waits for an answer, whereas in
request/response messaging, the sender may not wait for a response; instead responses may be
processed asynchronously.

For this case, when two or more applications wish to communicate synchronously but still wish
to use the MQSeries messaging infrastructure, it is recommended that each application define an
inbound queue and that the application code for the conversation be written using blocking reads
on the input queues. This will approximate synchronous communication when the messaging
infrastructure is operating nominally.

The Integration Framework test components use synchronous communications emulation
messaging between the EPD Wrapper component and the Enterprise PDC component when the
EPD Wrapper sends the SyncInventory BOD and requests a confirm BOD back from the
Enterprise PDC.

10 Open Applications Group Common Middleware API Specification
11 Open Applications Group Common Middleware API Specification

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

204

5.5.1.5 Quality of Services Options

5.5.2 Message Queue Configuration Considerations

The heart of MQSeries is the message queue manager (MQM), MQSeries’ run-time program. Its
job is to manage queues and messages for applications.

A program may send messages to another program that runs in the same machine as the queue
manager, or to a program that runs in a remote system, such as a server or a host. The remote
system has its own queue manager with its own queues. The queue manager transfers messages
to other queue managers via channels using existing network facilities, such as TCP/IP, SNA or
SPX. Multiple queue managers can reside in the same machine. They also need channels to
communicate.

Application programmers do not need to know where the program to which they are sending
messages runs. They put their messages on a queue and let the queue manager worry about the
destination machine and how to get the messages there. MQSeries knows what to do when the
remote system is not available or the target program is not running or busy. 12

Except for publish/subscribe, it is recommended that applications define one queue for each
incoming BSR message flow. Applications may choose to further define queues to separate
messages based on some application-specific discriminator, e.g. message size or message
priority.

Where possible, queues should be configured to trigger execution of the programs that will
process the messages on the queue. The MQSeries option “trigger on first” is recommended.
Triggered programs should be written to process messages until no more messages are on the
queue.

About Message Queues

Queues are defined as objects belonging to a queue manager. MQSeries knows a number of
different queue types, each with a specific purpose. The queues the developer uses are located
either in the machine and belong to the queue manager to which it is connected, or in the server
(Client side). Figure 10 lists different queue types and their purposes. More detailed information
is below.

Queue Types

Local queue A real queue
Remote queue Structure describing a queue
Transmission queue (xmitq) Local queue with special purpose

12 MQSeries Primer, IBM

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

205

Initiation queue Local queue with special purpose
Dynamic queue Local queue created "on the fly"
Alias queue Alternate name
Dead- letter queue One for each queue manager
Reply-to-queue Specified in request message
Model queue Model for local queues
Repository queue Holds cluster information13

The Integration Framework test components use all of the preceding queue types except the
dynamic and repository queues.

5.5.2.1 Static Queues

A static queue is defined to be just a queue that is not dynamic. Static local queues compose the
majority of the queues used by the Integration Framework test components, and will likely
compose the majority of the queues used by a new application. Static queues are predefined by
an administrator; they are not created “on the fly” at runtime. Every Integration Framework test
component uses at least one static local queue.

5.5.2.2 Dynamic Queues

A dynamic queue is defined "on the fly" when the application needs it. Dynamic queues may be
retained by the queue manager or automatically deleted when the application program ends.

Dynamic queues are local queues. They are often used in conversational applications, to store
intermediate results.

Dynamic queues can be:

• Temporary queues that do not survive queue manager restarts

• Permanent queues that do survive queue manager restarts14

The developer will want to use a dynamic queue if they want MQSeries to create a queue “on the
fly” for the application at runtime. One case where a dynamic queue is useful is for generating
reply-to queues for client applications that send messages to a server’s input queue. The client
opens a model queue and gets the name of a dynamic queue that MQSeries creates for the client.
Then the client sets the reply-to queue information (in the message it is to send to the server) to
be the name of the dynamic queue. The client then sends the message to the server and listens on
the dynamic queue for the response from the server.

13 MQSeries Primer, IBM
14 MQSeries Primer, IBM

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

206

Use of a dynamic queue is recommended for those cases where the developer does not need the
queue after the application ends. For example, the developer may want to use a dynamic queue
for the “reply-to” queue. The name of the reply-to queue in the ReplyToQ field of the MQMD
structure is specified when a message is put on a queue.

To create a dynamic queue, use a template known as a model queue, together with the MQOPEN
call. The developer creates a model queue using the MQSeries commands or the operations and
control panels. The dynamic queue created takes the attributes of the model queue.

When the developer calls MQOPEN, specify the name of the model queue in the ObjectName
field of the MQOD structure. When the call completes, the ObjectName field is set to the name
of the dynamic queue that is created. Also, the ObjectQMgrName field is set to the name of the
local queue manager.15

The Integration Framework test components do not use any dynamic queues.

5.5.2.3 Local and Remote Queues

Local Queue
A queue is local if it is owned by the queue manager to which the application program is
connected. It is used to store messages for programs that use the same queue manager. For
example, program A and program B each has a queue for incoming messages and another queue
for outgoing messages. Since the queue manager serves both programs, all four queues are local.

Remote Queue

A queue is “remote” if it is owned by a different queue manager. A remote queue definition is
the local definition of a remote queue. A remote queue is not a real queue. It is a structure that
contains some of the characteristics of a queue hosted by a different queue manager. The
application programmer can use the name of a remote queue just as he or she can use the name
of a local queue. The MQSeries administrator defines where the queue actually is. Remote
queues are associated with a transmission queue.

Notes:

- A program cannot read messages from a remote queue.

- The developer does not need a remote queue definition for a cluster queue. 16

A remote queue will need to be used when the developer wants queues on a remote queue
manager to be visible on another queue manager. An alternative to use of remote queues is

15 Pg 104, IBM “MQSeries Application Programming Guide” manual
16 MQSeries Primer, IBM

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

207

clustering, which is commonly used for load balancing and workload management as well as for
making queues visible across queue managers.

The Integration Framework test components use remote queues on one queue manager, called
QMR1A1, to communicate with the publish/subscribe broker running on a different queue
manager called QMR1C1. As mentioned above, though, the majority of the queues used by the
test components are static local queues.

5.5.2.4 Queue Aliases

Alias queues are not true queues but definitions. They are used to assign different names to the
same physical queue. This allows multiple programs to work with the same queue, accessing it
under different names and with different attributes.17

The Integration Framework test components use alias queues to allow the requisitioning
component to talk with the pseudo-supply Legacy application. The requisitioning component
constructs the name of the queue it will use at runtime, which is defined on a per-base basis, and
aliases are defined for all the possible names that could be constructed. These aliases point to the
input queue for the pseudo-supply Legacy application input queue, which is defined on a
regional basis. More concretely, the requisitioning component can generate the queue names

PSEU.BASE1.ADDREQUISITN.INBOUND

PSEU.BASE3.ADDREQUISITN.INBOUND

both of which are defined as queue aliases pointing to the queue

PSEU.REGION1.ADDREQUISITN.INBOUND

which is where the pseudo-Legacy supply component looks for input.

5.5.2.5 Cluster queues

A cluster queue is a local queue that is known throughout a cluster of queue managers, that is,
any queue manager that belongs to the cluster can send messages to it without the need of a
remote definition or defining channels to the queue manager that owns it.

There are two quite different reasons for using clusters: to reduce system administration and to
improve availability and workload balancing.

In a traditional MQSeries network using distributed queuing, every queue manager is
independent. If one queue manager needs to send messages to another it shall have defined a
transmission queue, a channel to the remote queue manager, and a remote queue definition for
every queue to which it wants to send messages. If the developer groups queue managers in a

17 MQSeries Primer, IBM

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

208

cluster, the queue managers can make the queues that they host available to every other queue
manager in the cluster. Then, assuming the developer has the necessary network infrastructure in
place, any queue manager can send a message to any other queue manager in the same cluster
without the need for explicit channel definitions, remote queue definitions, or transmission
queues.

As soon as the developer establishes even the smallest cluster they will benefit from simplified
system administration. Queue managers that are part of a cluster need fewer definitions and so
the risk of making an error in the definitions is reduced.18

5.5.2.5.1 Fault Tolerance and Load Balancing

The developer can set up a cluster of queue managers that has more than one definition for the
same queue (for example, the queue managers in the cluster could be clones of each other).
Messages for a particular queue can be handled by any queue manager, which hosts an instance
of the queue. A workload-management algorithm decides which queue manager handles the
message and so spreads the workload between the queue managers.

The developer may organize the cluster such that the queue managers in it are clones of each
other. This means they are able to run the same applications and have local definitions of the
same queues. Because the developer can have more than one instance of an application, each
receiving messages and running independently of each other, the workload can be spread
between their queue managers.

The advantages of using clusters in this way are:

• Increased availability of queues and applications

• Faster throughput of messages

• More even distribution of workload in the network

Messages destined for a particular queue can be handled by any one of the queue managers that
host an instance of that queue. This means that applications need not explicitly name the queue
manager when sending messages. A workload management algorithm determines which queue
manager should handle the message.

Because more than one queue manager is able to handle the same message, the risk of delayed
delivery when a queue manager or communications link is unavailable is greatly reduced. The
workload management algorithm tries one queue manager after another, if an initial attempt to
deliver a message should fail. 19

18 Pg. 41, IBM “MQSeries Queue Manager Clusters” manual
19 Pg. 41, IBM “MQSeries Queue Manager Clusters” manual

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

209

Use of MQSeries clustering is recommended for applications with high-throughput or high-
availability requirements. Clustering should not be performed across a wide-area network. For
this reason, clustering is recommended primarily for use within an RSA.

The Integration Framework test components do not use queue clustering.

5.5.2.6 Message Policies

A policy is an administrator created definition, external to the application, that controls how the
commands operate. A program selects a policy by passing a policy name as a parameter on calls.

Policies are defined in the repository and can be used to control, for example:

1. The attributes of the message, such as priority.

2. How the call operates, such as whether the call is part of a transaction.

3. Whether added value functions are to be invoked as part of the call, such as auditing and
exception handling.

An application could choose to use a different policy on each call and only specify those
parameters in the policy that are relevant to the particular call. It would then be more possible to
have policies shared between applications such as Transactional_Persistent_Put. Another
approach would be to have application specific policies that specified all the parameters for all
the calls made in an application. For example Payroll_Client policy. Both uses are possible
using AMI.20

The AMI will automatically retry when temporary errors are encountered on sending a message,
if requested by the policy. (Examples of temporary errors are queue full, queue disabled, and
queue in use).21

It is recommended that a systems administrator define use the AMI System Administration tool
to define policies and to store them in a “master” repository, and that the master repository be
used to regularly refresh “slave,” or subordinate, repositories deployed in other locations.

The default settings for AMI policies were adequate for use in the Owego SIL. Policy
definitions will depend directly on the application characteristics. It is recommended that a
system administrator become familiar with the MQSeries AMI policy options and work with
application developers to define policies suitable for each deployed application. Use of the
default IBM policies is recommended unless there is an application-specific reason to deviate
from them.

20 Open Applications Group Common Middleware API Specification
21 Pg. 6, IBM “Application Messaging Interface” manual

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

210

The Integration Framework test components use AMI, and therefore AMI policies, in two places:
the EPD Wrapper component and the pseudo-Legacy supply component. The EPD Wrapper
component uses the Lockheed-developed AMI Helper classes, a Java interface to the generic
AMI Java services, to communicate with MQSeries. The pseudo-Legacy supply component uses
the C++ bindings for AMI to communicate with MQSeries. For each component, an
administrator pre-defined the AMI service points and policies, which the applications use.

5.5.2.7 Message Logging

Logging for Persistent Messages

Circular logging-Use circular logging if all that is wanted is restart recovery, using the
log to roll back transactions that were in progress when the system stopped. Circular
logging keeps all restart data in a ring of log files. Logging fills the first file in the ring,
then moves on to the next, and so on, until all the files are filled. It then goes back to the
first file in the ring and starts again. This continues as long as the product is in use, and
has the advantage that the developer never runs out of log files.

Linear logging-Use linear logging if both restart recovery and media or forward recovery
is wanted (recreating lost or damaged data by replaying the contents of the log). Linear
logging keeps the log data in a continuous sequence of files. Space is not reused, so the
developer can always retrieve any record logged from the time that the queue manager
was created.

As disk space is finite, the developer may have to think about some form of archiving. It is an
administrative task to manage disk space for the log, reusing or extending the existing space as
necessary. 22

5.5.2.7.1 Recommendation

While linear logging offers recoverability and auditability superior to that of circular logging,
linear logging is also much more difficult to administer, particularly across a large enterprise.
Therefore it is recommended that circular logging be used. The Integration Framework test
components use MQSeries configured with circular logging (the default logging style).

5.5.2.8 Naming Conventions and Services

It is recommended that MQSeries installations conform to the DISA guidelines except as noted
in Section 5.5.2.8.1 below. Topics should be named as follows:

Location of sender + “/” + “application id” + “application message type”, e.g.,
“Base1/Payroll/EmployeeSummaryList”.

22 Pg. 215, IBM “MQSeries System Administration” manual

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

211

5.5.2.8.1 Deviations from and uses of the DISA naming convention
standards

Paragraph numbers refer to the DISA MQSeries naming convention standards document.

GCSS will deviate in most cases from paragraph 3.8.3.7.223 by omitting the name of the
application sending the message and the associated application details.

5.5.2.8.2 Usage of the DISA naming convention standards

1. GCSS will specify the location of an application with an identifier immediately following the
application name. And GCSS will specify the Business Object document type in an
identifier immediately following the location identifier. Example:
PDC.BASE1.SYNCINVENTORY.INBOUND (inbound SyncInventory BOD for Parts
Data Collection component at Base 1).

2. The application component of the queue name will be at most 8 characters in width. The
location name component of the queue name will be at most 9 characters in width. The
Business Object Document type component of the queue name will be at most 20 characters
in width. The GCSS Enterprise Authority will make sure that location, Business Object
document, and application abbreviations are unique and consistently applied across the
enterprise.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

. . .

4

INBOUND,
OUTBOUND or

RECEIVER (optional)

BOD Name
(20-char max)

Application Name
(8-char max)

Location Name
(9-char max)

0 1 2 3

Figure 63: DISA Naming Conventions Model

Examples:

- ACPS.EGLIN.SYNCINVENTORY.INBOUND

- CPARS.LUKE.GETLISTITEM.OUTBOUND

- DMLSS.WRGHTPAT.UPDATEINVENTORY.INBOUND

- ARMS.DOVER.CONFIRMBOD.INBOUND

In these examples, the location Wright-Patterson AFB was abbreviated as WRGHTPAT.
The GCSS Enterprise Authority will create and manage such abbreviations.

23 DISA MQSeries naming convention standards document

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

212

3. The application name “IF” is reserved for use by the Integration Framework.

4. Stream queues used for publish/subscribe will use a BOD name of “DEFAULT.STREAM”
and will omit the INBOUND/OUTBOUND optional suffix.

5. Queues used to receive publications will use the RECEIVER suffix.

5.5.2.9 Tips for MQSeries developers and administrators

• Applications should set message priority and persistence directly rather than relying
on the queue defaults.

This is important because after an application is deployed, it is possible that a system
administrator could change the default message priority and/or persistence attributes on
the queue(s) the application is using, which change might inadvertantly break the
application.

• All MQSeries logging should be done to fast devices, e.g., SCSI disk drives.

This is because MQSeries writes to the log for each persistent message. Thus the speed
of log writes can put an upper bound on queue manager throughput.

• Each major application should have its own queue manager.

If two applications share a queue manager and one is high-volume, it is possible that the
high-volume application will saturate the queue manager to the detriment of the low-
volume application.

• Different channels should be defined only when there is something physically
different about the transports, e.g., they use different hardware or communications
protocols.

If two channels ultimately send data across the same piece of physical wire, the
throughput is limited by the wire, not by the channels. Because of this, it is claimed that
one channel is as good as two.

Separation of channels by communications protocol is recommended to ease
administration of the MQSeries installation.

• Applications developers should design their applications such that errors in
triggered applications (1) send notification to an operator, and (2) turn off
triggering.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

213

If no notification is sent to an operator, then it is possible the error will not be quickly
noticed or corrected. If triggering is left on, the error can occur multiple times as
messages are added to the queue.

• Applications should be designed to write error reports to a central "error queue"
which triggers pages or otherwise solicits human intervention.

A central location for error monitoring and reporting is an important piece of an overall
systems management strategy. This recommendation comes from IBMs experience of
managing the Chicago Mercantile Exchange, a large MQSeries installation.

• Most triggered applications should be TRIGGER_ON_FIRST.

Most of the time we want a triggered application to “wake up” when there are messages
on the queue, to process all the messages on the queue, and to exit when there are no
more messages on the queue. This corresponds to trigger type FIRST.

If a triggered application is trigger type EVERY it is possible in a high-volume situation
for the queue manager to exhaust system resources by starting too many instances of the
triggered application.

If a triggered application is trigger type DEPTH, it is possible that the application will not
be triggered in a timely fashion – if fewer than TriggerDepth messages are placed on the
queue.

See the MQSeries Application Programming Guide, chapter 14 for a thorough discussion
of triggering.

• Clustering is not recommended if the queue manager is not saturated, unless fault
failover is desired.

Clustering incurs overhead that is best avoided unless the accompanying benefits are
needed.

• Applications should set the expiration date on non-persistent messages with a short
lifetime.

This is to avoid the need to “clean-up” old non-persistent messages later. If the
expiration date of non-persistent messages is not set, the messages will remain on the
queue until the next queue manager restart.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

214

5.5.3 Publish/Subscribe approach

QMR1A1 QMR1A2 QMR1A3 QMR1A4

Child1

process process

Parent
broker

QMR2A1

Child2

process

 LAN

WAN

RSA1 RSA2

cluster

Figure 64: Parent/Child Hierarchy

It is desired for a process to be able to publish to its local queue manager and to have the
publication be received by processes running on remote queue managers while minimizing WAN
traffic. To this end it is recommended that queue managers be organized as depicted above in
order to establish a publish/subscribe broker “skeleton” throughout the enterprise. A publish /
subscribe broker process is run on the parent and on child queue managers. The child queue
managers are connected to application queue managers via standard MQSeries distributed
queuing (channels, remote queues).

A process, say on queue manager QMR1A1, publishes to a locally defined remote queue
pointing to a stream on child 1. The broker on child 1 sees the publication and publishes it to the
other brokers in the broker network, including child 2. A remote queue is defined on child 2 that
resolves to a local queue on QMR2A1. The process on QMR2A1 specified this remote queue
when it subscribed to the publication’s topic. The broker on child 2 puts the publication to this
remote queue on child 2 and the message winds up in a local queue on QMR2A1, which is
visible to the subscribing process.

This approach can also be used to publish to a clustered queue. A process in RSA1 can specify
as its subscription queue the name of a clustered queue. When a publication is received, the
messages are distributed among the clustered queues by a cluster workload exit.

In the deployment of queue managers in support of the test components, the parent and child 1-
queue managers will co-reside on the same physical machine as the queue manager QMR1A1.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

215

When a message is published, it is published under a given topic on a given stream. To simplify
administration of the publish/subscribe network, it is recommended that separate streams be
defined for each major location or application that will be using the message broker network.
This will allow configuration of the various streams, for example, for performance and security.

5.5.3.1.1 Utility Components for MQAA

Lockheed has developed two Component Broker utility components which extend the basic
functionality provided by the MQAA. These components are in a module called TMMessage
and the components are called TMOutbound and TMInbound, used respectively for sending
outbound and receiving inbound messages. The requisitioning component and the Base and
Enterprise PDC components use these utility components to communicate with MQSeries.

5.5.4 Messaging from within the Application Server

The following approach is used to communicate between MQSeries applications and Component
Broker CORBA components.

Servlet

Component

Entity
Bean

(or PO)

Entity
Bean

(or PO)

Queues

Component Broker

MQAATrigger
Monitor
Process

Invokes

Creates, invokes

Creates

Web Server

Figure 65: Model of Communication Between MQSeries Applications and Component Broker CORBA
Components

See also Section 5.3, “Communications between layers – Horizontal,” of this document for more
information on messaging from within the application server.

5.5.4.1.1 Initialization

Trigger monitor process is started and it initializes any publish/subscribe subscriptions for the
application (optional). Then it blocks on a read on an initiation queue. When a message arrives
the trigger monitor will look up or create a Session Bean and call the messageReady() method on
the application component.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

216

5.5.4.1.2 Messages coming from an input queue

Asynchronous case
In the asynchronous case there is a separate process, the trigger monitor, listening on the
initiation queue of the (triggered) input queue. When a message appears on the input queue (and
hence on the initiation queue), the trigger monitor calls the messageReady() method of the
application component, passing as an argument the name of the input queue. The component
uses a TMInbound object to pull the message off the input queue. The component then
processes and optionally replies to the message.

Synchronous case
In the synchronous case, the component effectively blocks an MQAA get (using the
TMInbound object) on the input queue. When a message arrives on the queue, the get succeeds
and the component processes and optionally replies to the message.

Note that any synchronous use of MQSeries shall take into account the possibility that the
synchronous call, e.g. a CORBA call, will time out before a response to the message is received
via MQSeries. This could occur, for example, if the responding MQSeries application is not
running. In this case the request messages would accumulate on the responder program’s input
queue; they would not be answered in a timely fashion.

The Integration Framework test components use a trigger monitor, PDC_TM.exe, to monitor
several input queues for the Enterprise and Base PDCs. In addition to the basic trigger monitor
functionality (read a message, invoke messageReady()), this trigger monitor contains
initialization logic specific to the PDC applications. In particular, it registers the Enterprise PDC
with the publish/subscribe broker as a publisher of information, and it subscribes the Base PDCs
to the topic on which the Enterprise PDC will publish.

5.5.4.1.3 Outgoing messages

The component uses a TMOutbound object to put the message on to the desired destination
queue, or to publish the message under the desired topic.

5.5.5 Messaging from an Application outside the Application Server

The approach for messaging outside the application server is to have the application use the AMI
interface to MQSeries either directly or through the AMIHelper Java classes provided as part of
the Integration Framework. The AMI interface is complete and relatively easy to use. IBM
provides several sample programs with the AMI distribution. The AMI Helper classes provided
by Lockheed further encapsulate the AMI interface, reducing even more the development effort
required for an application outside the application server to send a message. The File Wrapper
test application component provided with the Infrastructure Framework gives an example of how
to use some of the AMIHelper classes, and Javadoc documentation for the AMI Helper classes
is provided with the Infrastructure Framework.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

217

5.6 USING THE INTEGRATION FRAMEWORK LOG FACILITY

The Integration Framework (IF) 2.0 Log Facility is implemented using the log4j package. The
log4j package is a message logging utility written in Java and distributed under the IBM Public
License Version 1.0. The log4j package is delivered with the IF and it is maintained at
http://jakarta.apache.org/log4j/doc/index.html. IF 2.0 Internal components and IF 2.0 Test
applications use the log4j package to write prioritized messages to the operator's console and a
log file. Any application installed on the IF 2.0 which is written in Java can use the log4j
package to log messages. For applications written in C/C++, the IF provides a C/C++ interface to
log4j incorporating the Java Native Interface (JNI).

5.6.1 Log4j Version 0.8.5b Package Overview

The log4j package provides a simple yet flexible mechanism to output log statements to a file, a
java.io.Writer, a java.io.OutputStream or a remote Unix syslog daemon. Table 26: Log4j
Packages on page 217 depicts the packages comprising log4j.

Table 26: Log4j Packages

org.log4j The main package of log4j.
org.log4j.examples Example usage of log4j including source code.
org.log4j.helpers This package is used internally.
org.log4j.net Package for remote logging.
org.log4j.nt Package for NT event logging.
org.log4j.performance Package to measure the performance of the different log4j components.

org.log4j.xml XML based configurators.

org.log4j.xml.examples Example usage of log4j with XML (including source code).

Inserting log statements into code is a low-tech method for debugging it. It may also be the only
way because debuggers are not always available or applicable. This is usually the case for multi-
threaded applications and distributed applications at large. As Brian W. Kernigan and Rob Pike
put it in their book, The Practice of Programming :

 As personal choice, we tend not to use debuggers beyond getting a
 stack trace or the value of a variable or two. One reason is that it
 is easy to get lost in details of complicated data structures and
 control flow; we find stepping through a program less productive
 than thinking harder and adding output statements and self-checking
 code at critical places. Clicking over statements takes longer than
 scanning the output of judiciously-placed displays. It takes less
 time to decide where to put print statements than to single-step to
 the critical section of code, even assuming we know where that

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

218

 is. More important, debugging statements stay with the program;
 debugging sessions are transient.

In case of problems with an application, it is helpful to enable logging so that the problem can be
located. With log4j it is possible to enable logging at runtime without modifying the application
binary. The log4j package is designed so that log statements can remain in shipped code without
incurring a high performance cost. It follows that the speed of logging (or rather not logging) is
capital. When logging is turned off, log statements of this package have a computational cost
ranging from 30 nanoseconds to a few microseconds. Optimization is done by avoiding argument
construction by calling Category.isDebugEnabled() method before making the logging
request.

5.6.1.1 Prerequisites

• Log4j is JDK 1.1.x and 1.2 compatible.
• The TextPaneAppender requires Swing.
• The org.log4j.xml package requires an XML parser.

5.6.1.2 Using log4j

Using the log4j package the developer can determine at runtime which log statements will be
printed on a file or an OutputStream of their choice. The decision is based on the priority and
category of the log statement. Log4j accommodates all 8 priority levels of UNIX syslog.
However, four priority levels are preferred. These priorities are ERROR, WARN, INFO and
DEBUG listed in decreasing order of severity. These are all defined in the Priority class.
The Category class defines a set of methods debug, error, which specify the priority of a log
statement. For example, for some Category instance cat the log statement cat.warn(...) has the
WARN priority. These methods are used to selectively print log statements. They come in two
flavors, the first admitting a message String and the second admitting a Throwable parameter in
addition to the message string. As the name indicates, the message parameter is the message to
be printed. The category settings are used to determine at runtime whether to print a log
statement or not.

5.6.1.3 Category Hierarchies
One of the distinctive features of log4j its hierarchical categories and their evaluation. Categories
are defined by their names. A category may also be assigned a priority but not necessarily. We
say that category named "X" is higher ranking than a category named "X.Y". However, the
category named "X" bears no relation to categories "x" or "XY" or "z". More formally, a
category C is said to be a parent of D, if C's name followed by a dot, is a prefix of D's name
(using case-sensitive comparison). At the base of the category hierarchy is the "root" category,
which always exists and is assigned a default priority.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

219

Rule 1

The chained priority for a given category C, is equal to the first non-null priority in
the category hierarchy, starting at C.

According to Rule 1, the chained priority of a category named "X.Y.Z", is the priority assigned
to category named "X.Y.Z". If however "X.Y.Z" is not assigned a priority, then the chained
priority will be the priority of the category named "X.Y". If category named "X.Y" is undefined
or is not assigned a priority, then the chained priority of "X.Y.Z" will be the priority of the
category named "X". If "X" is undefined or not assigned a priority, "X.Y.Z" will assume the
priority of root, which is always defined.

Table 27: Chained Priorities Examples below uses four examples to depict various assigned
priority values and their resulting chained priorities according to Rule 1.

Table 27: Chained Priorities Examples

Example 1 Example 2
Category

name
Assigned
priority

Chained
priority

Category
name

Assigned
priority

Chained
priority

Root Proot Proot Root Proot Proot
X none Proot X Px Px
X.Y none Proot X.Y Pxy Pxy
X.Y.Z none Proot X.Y.Z Pxyz Pxyz

Example 3 Example 4
Category

name
Assigned
priority

Chained
priority

Category
name

Assigned
priority

Chained
priority

Root Proot Proot Root Proot Proot
X Px Px X Px Px
X.Y none Px X.Y none Px
X.Y.Z none Proot X.Y.Z Pxyz Pxyz

The root category can be retrieved with the getRoot method. The Category.getInstance method is
used to retrieve a given Category instance. This method takes the name of the desired category
as a parameter. The user does not have to worry about the order of definition of categories. When
instantiated a child category will link itself to its nearest parent. Similarly, when instantiated a
parent category will link itself to all its existing children categories. By the way, the linking is
fast, even for hundreds of categories.

Rule 2

A log statement of priority p in a category with chained priority q, will be printed if p >= q.

Rule 2 uses the ordering relation: ERROR, WARN, INFO, DEBUG.
In summary, the category hierarchy allows the programmer to enable (or disable) logging at a
high level and disable (or enable) logging at a lower level. One could imagine more elaborate

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

220

mechanisms of selection but hierarchical categories (with some thinking) are usually expressive
enough.

The log4j package is designed so that categories are instantiated and used (but not configured) at
compile-time. They are usually assigned priorities at run-time by reading a configuration file.

5.6.1.4 Log Output
The log output can be customized in many ways. Moreover, one can completely override the
output format by implementing one's own Layout. Here is an example output using
PatternLayout with the conversion pattern "%r [%t] %-5p %c{2} %x - %m\n"

Figure 66: Example of Log Output Code Using PatternLayout

The first field is the number of milliseconds elapsed since the start of the program. The second
field is the thread outputting the log statement. The third field is the priority of the log statement.
The fourth field is the rightmost two components of the category making the log request. The
fifth field (just before the '-') is the nested diagnostic context (NDC). Note the nested diagnostic
context may be empty as in the first two statements. The text after the '-' is the message of the
statement.

5.6.1.5 Usage Example
Figure 67: Compile-Time Directive Usage Example Figure 72 uses compile-time directives to
assign priorities to categories. The preferred way is reading these directives from a configuration
file during application initialization. See PropertyConfigurator.configure and
DOMConfigurator for possible configuration file formats.

176 [main] INFO examples.Sort - Populating an array of 2 elements in reverse order.
225 [main] INFO examples.SortAlgo - Entered the sort method.
262 [main] DEBUG SortAlgo.OUTER i=1 - Outer loop.
276 [main] DEBUG SortAlgo.SWAP i=1 j=0 - Swapping intArray[0] = 1 and intArray[1] = 0
290 [main] DEBUG SortAlgo.OUTER i=0 - Outer loop.
304 [main] INFO SortAlgo.DUMP - Dump of interger array:
317 [main] INFO SortAlgo.DUMP - Element [0] = 0
331 [main] INFO SortAlgo.DUMP - Element [1] = 1
343 [main] INFO examples.Sort - The next log statement should be an error message.
346 [main] ERROR SortAlgo.DUMP - Tried to dump an uninitialized array.
 at org.log4j.examples.SortAlgo.dump(SortAlgo.java:58)
 at org.log4j.examples.Sort.main(Sort.java:64)
467 [main] INFO examples.Sort - Exiting main method.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

221

Public static void main(String[] args) {
 // Assigning priorities to categories. This is typically done at
 // initialization time
 Category a = Category.getInstance("a");
 a.setPriority(Priority.DEBUG);
 Category x = Category.getInstance("x");
 x.setPriority(Priority.WARN);
 … other code
 }

Figure 67: Compile-Time Directive Usage Example

Figure 68 is code that would normally be executed after the code in Figure 67: Compile-Time
Directive Usage Example. The accompanying comments explain the function of the code. Before
using log4j, the reader should make sure to understand this example.

{
 // Variable a will automagically refer to instance defined above.
 Category a = Category.getInstance("a");

 // Variable x will automagically refer to instance defined above.
 Category x = Category.getInstance("x");

 // A new category instance will be created. This instance will not
 // be assigned a priority.
 Category x_y = Category.getInstance("x.y");

 // This statement will print, because WARN = a = DEBUG.
 a.warn("RFC 724 defines the IP protocol.");

 // This statement will print, because DEBUG = a = DEBUG.
 a.debug("The value of variable I is " + I);

 // This statement will not print, because DEBUG not print,
 // because INFO = x = WARN.
 x.warn("Looking at a screen for too long may hurt your eyes.");

 // This statement will print, because ERROR = x = WARN.
 x.error("Can't have the cake and it it too!");

 // This statement will not print, because x_y is not assigned a
 // priority x_y will assume the priority of x which is WARN.
 X_y.debug("x is the parent of x_y");
 }

Figure 68: Example Code of Compile-Time Follow up

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

222

5.6.1.6 Initialization
Log behavior is usually configured during program initialization. Use the configuration methods
in BasicConfigurator, PropertyConfigurator or DOMConfigurator to configure log4j
parameters from a configuration file. For shipped code, call BasicConfigurator.disableInfo
method during program initialization to disable logging messages that are of priority INFO or
DEBUG.

5.6.1.7 Format of Log Output
The format of log output depends on the layout instance assigned to the appender in use. At
present time, log4j comes with a powerful layout called the PatternLayout that can be
configured using a conversion pattern.

5.6.1.8 Multiple Appenders
Log4j categories can have multiple appenders. The addAppender method adds an appender to a
given category. The appenders follow the category hierarchy. In other words, the appenders of
the child are added to the appenders of the parents. One can override this behavior by setting the
additivity flag to false.

Rule 3

The output of a log statement of category C will go to all the appenders in C and its parents.
This is the meaning of the term "appender additivity".

However, if a parent category of C, say P, has the additivity flag set to false, then C's
output will be directed to all the appenders in C and it's parents up to and including P but not
the appenders in of any of the parents above P.

Categories have their additivity flag set to true by default.

Table 28 shows an example illustrating the function of multiple appenders.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

223

Table 28: Multiple Appender Example

Category
Name

Added
Appenders

Additivity
Flag

Output
Targets Comment

Root A1 not applicable A1

The root category is
anonymous but can be
accessed with the
Category.getRoot()
method.

x A-x1, A-x2 true
A1, A-x1, A-
x2

Appenders in root are
added to appenders in
"x".

x.y none true
A1, A-x1, A-
x2

Appenders of "x" and
root.

x.y.z A-xyz1 true
A1, A-x1, A-
x2,
A-xyz1

Appenders in "x.y.z",
"x" and root.

Security A-sec false A-sec

Only appenders of
"security" due to false
setting of the additivity
flag.

Security.access none true A-sec

Only appenders of
"security" due to due to
false setting of the
additivity flag in
"security".

5.6.2 Integration Framework 2.0 Implementation Guidelines

5.6.2.1 Installation
The Integration Framework Version 2.0 is using log4j Version 0.8.5b. This version of the log4j
package is delivered as log4j-v0.8.5b.zip. To install, unzip this file into the INSTALL_DIR
directory creating INSTALL_DIR\log4j-v0.8.5b.

The INSTALL_DIR directory can be any directory the developer chooses. For example, during
IF development, INSTALL_DIR was c:\h\IFSServices\lib\log4j and the log4j directory was
c:\h\IFSServices\lib\log4j\log4j-v08.5b.

To use the log4j package, add the log4j.jar file, located in the log4j-v0.8.5b directory, to the
Java application's classpath. Refer to the INSTALL_DIR\log4j-v0.8.5b\javadoc directory for
complete documentation on how to implement the log4j package. Browsing
INSTALL_DIR\log4j-v0.8.5b\javadoc\overview-summary.html is a good place to start

5.6.2.2 Category Names
There will be a minimum of one log4j message category per class. The name of these message
categories will be set to the class name. The fully qualified name of a class in a static block for
class X can be retrieved with the statement X.class.getName(). Note that X is the class name and

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

224

not an instance. The X.class statement does not create a new instance of class X. Here is the
suggested usage template assigning the name of the Foo class to the cat category.

Figure 69: Example Code for Assigning Foo Class to the cat Category

Message sub-categories may be created. To create a sub-category name, simply append a unique
identifier string to the parent category name. An example would be to create a sub-category for
the method M1 in the class Foo.

Figure 70: Example Code to Create a Sub-Category in the Class Foo

5.6.2.3 Message Priorities
Four message priorities are allowed: ERROR, WARNING, INFO, DEBUG.

Table 29: Message Priorities
ERROR A resource has failed and is currently not operational or a resource is near failure
WARNIN
G

A resource is in a cautious condition.

INFO A resource has performed normal activity.
DEBUG Used by the application programmer to isolate programming errors.

ERROR and WARNING priority messages will be enabled when IF Version 2.0 is delivered,
while INFO and DEBUG priority messages will be disabled.

5.6.2.4 Configuration File
All IF 2.0 internal components and test applications will use a single Configuration File per
application. Key entries in the Configuration File are used by the application to configure where
the messages are logged to and which priority levels are enabled for logging.

The default log4j configuration file used by the IF Version 2.0 is described in Section 5.6.2.5.

package a.b.c;

public class Foo {
 static Category cat = Category.getInstance(Foo.class.getName());
 ... other code

}

static Category cat = Category.getInstance(Foo.class.getName()+"_M1");

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

225

5.6.2.5 Default log4j Configuration File
The following is the default log4j Configuration File used by the IF 2.0. The comments in the
file describe how each of the various keys is used to configure the log4j logging environment.

5.6.2.6 Log Statement Format
As discussed in Section 5.6.2.5, the default IF 2.0 log output will be to the console and to a log
file. Prior to delivery of the IF to the customer, the Console Appender A1 will be removed. A
complete log entry shall not exceed 256 characters.

Below are examples of the log output for the Appender A2 and A1 format strings. Highlighting
is used to identify each field of the conversion pattern and the log entry.

Figure 71: Example Code for Log Output Appender A1

The first field, 2000-09-07 15:23:51,291, is the ISO8601 date and time stamp. The second field,
[main], is the thread outputting the log statement enclosed in brackets. The third field, DEBUG,
is the priority of the log statement. The fourth field,
PDCSessionModuleBO.PDCSessionAOBOBase, is the rightmost thirty-five characters of the
category making the log request. The text after the “-“ is the user specified message of the
statement. The last format field in the conversion pattern, the "/n", generates a new line.

Figure 72: Example Code for Log Output Appender A2

The first field, '15', is the number of milliseconds elapsed since the start of the program. The
second field, '[main]', is the thread outputting the log statement enclosed in brackets. The third

File Appender: A2

ConversionPattern: %-6d{ISO8601} [%12.12t] %-5p %35.35c - %m\n

Log Entry:

2000-09-07 15:23:51,291 [main] DEBUG PDCSessionModuleBO.PDCSessionAOBOBase - Entering
PDCSessionAO: ENTERPRISE::messageReady

Console Appender: A1

ConversionPattern: %-6r [%12.12t] %-5p %30.30c (%x) - %m\n

Log Entry:

15 [main] DEBUG PDCSessionModuleBO.PDCSessionAOBOBase (HostName=svr1) - Entering
PDCSessionAO-ENTERPRISE::messageReady

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

226

field, DEBUG , is the priority of the log statement. The fourth field,
PDCSessionModuleBO.PDCSessionAOBOBase, is the rightmost two components of the
category making the log request. The fifth field, (HostName=svr1), (just before the “-“) and
enclosed in parentheses is the nested diagnostic context (NDC). Note the nested diagnostic
context may be empty. The text after the “-“ is the user specified message of the statement. The
last format field in the conversion pattern, the “/n”, generates a new line.

5.6.2.7 Example log4j Program

The following is an example of an implementation of the log4j Package. Comments in the
example describe the actions being performed.

5.6.3 A Note Regarding Tivoli Compatibility

All log files created using the log4j package are intended to be processed by a Tivoli Log File
Adapter (LFA) and presented as an event to an operator on a Tivoli Enterprise Console (TEC). It
is expected that these LFAs will be implemented by the Defense Information Systems Agency
(DISA). Since a Tivoli LFA can only process log files which contain single line log messages,
the application developer is cautioned to ensure that the length of all log file messages are less
than 256 characters. Included in the 256 characters are the log message fields automatically
included by log4j and the application developer's message string.

Single messages processed by the TEC can be assigned severity levels. The most severe
messages can represent alerts and alarms that once displayed on the TEC monitor, will cause
either a manual response from an operator or an automated response from the TEC. Message
priority assignment will be implemented by DISA with proper guidance from the application
developers.

Some alerts and alarms may be represented by a sequence of related events, with each event
generating a log message to the TEC. An example of this might may a sequence of invalid login
attempts within a specified time period. Rules can be generated which allow message sequences
to be processed by the TEC using its powerful correlation engine and handled as if they were a
single event.

History logs maintained by the TEC can later be processed into user friendly reports highlighting
any anomalous behavior that may have occurred during the time period encompassing the report.
Please refer to the Tivoli Documentation Suite for a further discussion of Tivoli Log File
Adapters and the Tivoli Enterprise Console.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

227

6. Securing the Application

6.1 Overview of IF Security

The IF provides technical security components that should satisfy most requirements for
security, for MAs that are GCSS-AF-compliant. This sub-section provides an overview of these
components and assistance in determining their applicability to a given Mission Application’s
needs.

The MA Security Engineer

Important: MA teams DO need to have a Security Engineer. Although the IF supplies
widely useful components and the GCSS-AF Integrator can assist in understanding how these
components are used, each MA team still needs someone who can:

1. Determine and analyze security requirements specific to the MAs domain (this

may include a formal or informal vulnerability assessment).

2. Decide on behalf of the MA which of those requirements the IF components

satisfy (in concert with the GCSS-AF Integrator).

3. Determine an approach for satisfying any MA security requirements the IF
components cannot satisfy.

4. Derive the data required to support the MAs use of IF security components.

5. Lead the implementation of the MA security design, including use of APIs and

interfaces to IF security components, and any non-IF security implementation (if
this includes any additional COTS components, additional firewall considerations
may need to be worked with USAF and DISA).

6. Coordinate security testing with the GCSS-AF Integrator and the USAF.

The MA security engineer need not necessarily be an information security specialist. The person
chosen for this position should, however, have a background that includes sufficient familiarity
with information security technical topics to allow the individual to understand security
requirements and to coordinate with the GCSS-AF Integrator and the USAF in discussing both
requirements and technical solutions. They should have good communication skills, and the
ability to self-educate themselves to fill in their security knowledge as required.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

228

Security From Browser to EJB/CORBA Component

Browser Web Proxy
Server

1

DNS

2a

Cisco
Local Director

2b
WebSEAL

3

4 5

Authzn_replica.db8

WWW Server

9

AE
10

AE ACLs11

14

15

13
CB

EJB

CORBA
Component

LDAP
Directory

6, 7

Audit Log

6

Oracle

MQ

Legacy

16

17

18Authorization
Server

Auth Proxy
Svc

12

Authzn_replica.db

Audit Log
12,15

WAN

DECC-D

GCSS-AF Enclave

Figure 73: Operational Diagram: Authentication & Authorization

The interaction described in the following series of scenarios is shown in Figure 73: Operational
Diagram: Authentication & Authorization:

(Note: The boxes in the diagram should be interpreted as functional rather than physical entities.
The colored areas indicate nominal physical locations. For IF v2.0, all servers are presumed to
be located in a single DISA DECC-D, and thus are protected by the DECC-Ds’ perimeter
defenses (firewall, etc.), although these elements are not shown on the diagram. The GCSS-AF
Enclave includes all shaded areas in the diagram above, and is protected by a separate security
“policy” at the firewall and routers.)

1. The Web Browser requests a URL (e.g.
https://www.gcssaf.rsa1.disa.mil/global/apps/menu) The browser sends the request to
their local Web Proxy Server (assuming one is in use, otherwise Proxy’s activity is
performed by Web Browser).

2. The Web Proxy Server performs a DNS lookup to www.gcssaf.rsa1.disa.mil and gets an

IP address of the Cisco Local Director. The request travels encrypted (HTTPS) over
NIPRNET through the DECC-Ds external firewall to a Cisco Local Director in the
Demilitarized Zone (DMZ) at the DECC-D.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

229

3. The Cisco Local Director forwards (routes) the request to one of N identically configured
WebSEAL servers. Local Director also maintains state information based on the SSL
session- id to forward additional requests from the same browser to the same WebSEAL
server and vice versa. (It is necessary to always have traffic flowing between the
Browser and the same WebSEAL server once a session has been established. Otherwise
the user would be forced to login again.) Note: All future traffic between WebSEAL and
the Browser will be routed through the Cisco Local Director and the user’s proxy server.

4. The WebSEAL server will determine whether a session has already been established with

this Browser. If not, then during SSL negotiations, the Browser will prompt the user to
send a client certificate. The SSL negotiation process will validate the client’s certificate.
If the SSL negotiation is successful and the user’s certificate is valide, WebSEAL does an
LDAP search of the Directory to find an object that matches the Distinguished Name of
the client certificate. If it finds it in the LDAP Directory, it looks for a Distinguished
Name attribute that identifies the Policy Director user that the certificate maps to. If the
Distinguished Name in the attribute is a valid Policy Director user, then the user is
considered authenticated. Skip to Step 7 acquiring the credential.

5. If the user does not submit a client certificate, WebSEAL will send a login form

(login.html or pkmslogin.html) to the Browser instead of the user’s initial URL request.
The user will enter the user’s userID (a.k.a. principal) and password in the form on the
Browser and click the Login button. The Browser will post this information, encrypted
over the network via HTTPS (SSL) to WebSEAL

6. WebSEAL will perform an LDAP search for the userID (principal) as a Distinguished

Name (dn) in the LDAP directory. Principal is an attribute of an InetOrgPerson in the
LDAP directory. When it finds a match, it compares the password supplied in the form
with the password attribute of the found InetOrgPerson object. (Technically, it performs
an LDAP Bind to accomplish this match – if the bind operation is successful, it indicates
the userID was found and the password matched.)

7. After a successful authentication, WebSEAL builds the credentials for the user (including

the uuid of the user, uuids of groups to which the user belongs, and other material) and
other material (string versions of principal and group names) and caches this material.
Caching keeps WebSEAL from the time consuming task of building the credential with
each request. WebSEAL maps the SSL sessionid with this credential, and some
timestamp information. For future Browser gets and posts, WebSEAL uses the SSL
sessionid as proof of prior authentication if it finds a match in its cache table. WebSEAL
checks the time stamp information against timeout parameters, including a session
timeout and a user inactivity timeout. These timeouts are configurable by the
administrator. (IF defaults for these are 4 hours, and 30 minutes, respectively). It forces a
new authentication (i.e. a new pkmslogin form) if any one of them is expired. With PKI
Certificate based authentication, it will prompt the user to re-select a client certificate.
The capabilities and configuration of the browser will determine whether the browser will
prompt the user for a password to the certificate database again or whether the user will
see a prompt at all if they only have one certificate.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

230

8. After a successful authentication, WebSEAL checks the user’s authority to access the

original URL request using the user’s credential against the replicated authorization
policy database.

If the Audit permission on the ACL for this object was turned on, then the success or
failure of the access check is logged on the WebSEAL server.

If the user fails the authorization check, a configurable HTML file indicating the user was
not authorized to access the URL.

9. If the user passes the authorization check, WebSEAL forwards the user’s original URL

request to the backend system. WebSEAL authenticates to the backend Web Server
using mutual SSL authentication. The certificate used in the SSL communication to the
backend Web Server is the WebSEAL server certificate. The Web Server uses the
certificate used in the SSL communication to authenticate the user. No password is
required.

10. WAS-AE is passed a WebSEAL userID and password in the BA Header and uses it to

establish a WAS-AE session; this is a separate “session” from the user session to
WebSEAL. 24 (The use of a userID and password for this session is necessitated by WAS
AE 3.02s lack of support for certificate-based mutual authentication. 25) This occurs for
the initial connection with every WebSEAL box.

Subsequent requests, even if they come from a different User/Browser, benefit from this
by reusing this already authenticated session. (Note: The connection has configurable
timeouts, which force re-authentication if one of them is exceeded, as explained in Step -
7.)

Limiting the number of times authentication takes place increases performance. The
GCSS-AF integration framework will limit management of Air Force userIDs and
passwords to the front-end Policy Director WebSEAL sessions and backend Legacy
systems.

Managing separate userIDs and passwords for individual GCSS-AF users on the backend
systems (WebSphere Application Server Advanced Edition and WebSphere Application
Server Enterprise Edition), is not scalable and would potentially create additional security
holes by never changing backend passwords. In addition, the Servlets will check the
individual user’s authorization, not WebSEAL’s authorization, by making explicit

24 (In a future release, the IF will support the use of Servlet Redirectors or a similar mechanism to facilitate the
distribution of WAS-AE function separately from Web Server function. The details will be dependent on the
specific COTS capabilities, especially at an enterprise level. Until then, the IF will require the Web Server and AE
to be co-hosted.)
25 WAS 3.5 is supposed to provide this feature, which will free up the BA Header to support single-sign-on (SSO),
see step 17 and 18.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

231

authorization checks to Policy Director using the user’s credential passed in the HTTP
header.

The Web Server passes the requested URL back to the browser. This includes the GCSS-
AF Main Menu, filtered to present only the subset of items that this user is authorized to
access.

The user can select an action from the menu. This request is processed according to
Steps 1-4, keeping in mind that the user is already authenticated, and that Local Director
and WebSEAL already have established a connection. Each menu choice is associated
with a Servlet, so the menu choice is passed to the Servlet engine (WAS AE) for
processing. (Actually, the menu choices can be associated with a Servlet, JSP, or HTML
file; for purposes of this discussion, we use a Servlet, because this provides the easiest
way of showing the full range of security paths.)

11. The Servlet engine checks to see whether WebSEAL has authorization to the Servlet. If
so, then it invokes the Servlet. This check uses a WebSEAL user ID and password that
are passed in the BA Header of the HTTP request.

12. The Servlet extracts the credential information supplied by WebSEAL in the HTTP

header from the HTTP_IV_CREDS parameter. The Servlet can check26 the permissions
of the credential to perform a specific action by performing an authorization check to a
Policy Director (PD) Authorization Server us ing encrypted Distributed Computing
Environment (DCE) Remote Procedure Calls (RPC). First it checks whether the user can
invoke the Servlet itself, and then it checks against any specific methods that the Servlet
invokes that require separate authorization decisions.

The PD Authorization Server checks the credential and the action requested against the
Access Control List (ACL) of the object attempting to be accessed and the PD
Authorization Server sends a decision back to the Servlet.

If the user is not authorized, the Servlet could return an application specific error message
or a generic page that would be created for unauthorized access.

If the user has access to invoke the Servlet and the specific method, in this case assume
an Enterprise JavaBean or CORBA Object and method, the Servlet programmatically
logs in27 (authenticates) to the WebSphere Application Server Enterprise Edition (WAS-
EE), a.k.a. Component Broker (CB), via a Servlet Login Helper. To do this, the Servlet

26 The Servlet is not required to perform an access check, since the menu filtering presents the user with only those
choices they are authorized for. However, it is good security practice to repeat the check at this point, because the
traffic from browser to servers could have been tampered with after the menu filtering was performed.
27 Actually, it checks to see if there is already a user session in place for this user. If so, it verifies that the
credentials for that session are still valid. If either check fails , then it logs in; for this narrative, we are presuming
this is the first time through, so a session is not already established, thus a login is needed.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

232

first establishes an SSL session to Component Broker (using a client keyring on the AE
side and a server keyring on the CB side). Component Broker takes the userID and
password supplied by the Servlet Login Helper and logs in to the Component Broker’s
DCE Cell.

If the user does not successfully authenticate, the Servlet sends a page to the user
indicating a system error and to retry their request. If the Servlet Login Helper
successfully authenticates to CB (DCE), then the Servlet invokes the session AO of the
requested object. The Servlet passes the credential supplied in the HTTP Header by
WebSEAL as a parameter to the methods invoked in the object (using the SecInfoStruct
data structure, assisted by the IFSServices helper classes; this includes passing the
BaseNameQualifier and BaseNameContext derived from the menu system).

13. The EJB/CORBA object checks the permissions in the credential to access the

EJB/CORBA object’s method by performing an authorization check to a Policy Director
(PD) Authorization Server Proxy using SSL RMI over IIOP.

14. The PD Authorization Server Proxy makes the calls to the PD Authorization Server on

behalf of the EJB/CORBA object using DCE RPC. It is necessary to use the PD
Authorization Server Proxy because the PD servers are in a different DCE cell than CB
servers. A hierarchical DCE cell allowing intercell communication could potentially be
created, but PD and CB are moving away from DCE in their future releases, so the effort
to manage hierarchical cells would be thrown away.

The PD Authorization Server checks the credential and the action requested against the
Access Control List (ACL) of the object attempting to be accessed and the PD
Authorization Server sends a decision back to the PD Authorization Server Proxy and on
to the requesting EJB/CORBA object.

If the user is not authorized, the EJB could return an error code to the Servlet indicating
that the user was not authorized to perform the requested function. The Servlet could
return an application specific error message or a generic page that would be created for
unauthorized access.

If the user is authorized, the EJB performs the action.

15. The EJB/CORBA object may need to use Message-Oriented Middleware (MOM),

specifically the MQSeries product, to communicate to another application hosted at a
different DECC-D. This communication includes the use of a DISA security “exit” and
VPN to provide nominal encryption and authentication on the messages.28

28 IBM/Tivoli is preparing a Policy Director module (“Policy Director for Messaging”) specifically to secure
MQSeries traffic. The IF will include this product when it is released and integrated, at which time the DISA exit
and VPN will be phased out.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

233

16. The EJB/CORBA object may have persistence in an Oracle database. The connection to
the Oracle database is managed by the container and uses a container supplied userID and
password. Individual userIDs and passwords to the backend database are not possible
with the current configuration of PD and CB software.

17. The Servlet may connect to a backend database that requires a userID and password. PD

WebSEAL will eventually be able to supply uniquely defined userID and password for
that resource in the BA Header to be used to log in to the backend database. PD
WebSEAL can only pass a single set of userID and password parameters in the BA
header for supplying userID and password information to backend systems.29

18. The Servlet or EJB may connect to a backend Legacy system that requires a userID and

password. (See Step - 17 for discussion.)

Design Note Regarding Legacy Systems and Databases
There are basically two options for connecting Legacy systems to the IF front-end that get
around the problem mentioned in Step - 17, to provide for separate user authentication to those
Legacy systems (each option has some possible variants for implementation) before the IF is
updated to include WebSphere v3.5:

Come through WebSEAL, then go through a set of AE and CB servers dedicated to interfacing
with this Legacy system. This allows for separate userID’ s but all shall have the same
password.

1. Come through WebSEAL but then pass control to a non-IF-based backend. By not using
AE, with its current restriction on mutual authentication, this frees the BA Header to pass
a Legacy ID and password via GSO. (WebSEAL can theoretically be junctioned to
different backend servers, although we have not tested this.)

2. In either case, the userID/password would be stored in the LDAP repository and retrieved

by WebSEAL when needed. The details of implementing this scheme (including any
schema changes to the LDAP directory) have yet to be worked out.

6.1.1 Security Requirements

The security requirements for the IF are derived from the GCSS-AF System Security Policy 15
December 1999. This document “establishes security policy for the Global Combat Support
System - Air Force (GCSS-AF), in accordance with AFSSI 5024. It identifies policies and
procedures that will minimize the risk of operating GCSS-AF in the System High Security Mode
at the Sensitive Unclassified and SECRET levels.” (Executive Summary) The derived individual

29 IF 2.0 cannot provide this capability since WAS AE 3.02 did not support direct mutual authentication via
certificates; see step 10. Hence the BA header had to be used to pass ID/password with AE. WAS 3.5 supposedly
provides for mutual authentication, hence the BA header will be freed up for database signon info in a future IF
release.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

234

security requirements are documented in the GCSS-AF Security Sub-System Specification. This
sub-section provides an overview of the IF security requirements to assist MA teams in
determining which of their security requirements are already dealt with by the IF. For the
individual security requirements that are summarized here, see the GCSS-AF Security Sub-
System Specification.

Overview
The most basic summary of the requirements the IF security components are intended to meet is
the “Orange Book” (DoD 5200.28-STD, Trusted Computer System Evaluation Criteria
(TCSEC)) C2 level of security. This specifies a level of “discretionary” access control that the
Government considers sufficient for securing systems that do not handle data above Secret
classification. (The Orange Book is supplemented by the “Red Book”, which provides
guidelines for implementing security in a networked environment.) The IF is expected to
support operation at the unclassified sensitive, system high mode, as a minimum. It is also
required to support systems that operate at the Unclassified level, or the Secret level, but not at
both levels, nor at levels above Secret.

Note Future Capability: The DoD “Rainbow Books” are being superseded by the
international Common Criteria for information security. As of the writing of this
Developer’s Guide, specific guidance had not come down for the use of Common Criteria
(CC) by the IF. It is expected that this guidance will be forthcoming in the near future,
and the IF will convert to the CC in a future release. However, it is expected that this
process will not involve major technical modifications to the IF security solution.

An overall IF requirement that affects the decisions made regarding the security solution is that
COTS products shall be used wherever possible to satisfy all technical requirements. In the
security area, the Tivoli Policy Director suite was selected to provide maximum COTS coverage.
In addition, IBMs WebSphere, Tivoli’s ESM products, and Oracle’s ANO all provide elements
of security coverage.

The IF security solution is intended to provide security coverage for applications that employ the
overall IF architecture. In particular, this means that security shall apply to communications
technologies supported by the IF architecture (CORBA and MOM), to database components of
the IF, and shall be inter-operable with the IF ESM components.

Authentication Requirements
The IF shall provide strong authentication services enabling human users and system entities to
be uniquely identified and to have actions they undertake verified and traceable to them. For
human users, this will be a userID plus password mechanism (with standard limits on password
choices and administration), with a planned migration to DoD class 3 and ultimately class 4 PKI
in future releases. For system entities, this will be a server DoD class 3 PKI certificate
mechanism, to be used whenever a communication path is opened within a GCSS-AF session,
with a planned migration to DoD class 4 PKI (i.e. smart cards or equivalent) in a future release.
For human users, the IF is required to support an enterprise-wide GCSS-AF sign-on through a

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

235

web browser. The intention is for all MA, Legacy, and sub-system sign-ons to be handled
implicitly by the IF (i.e. to provide “single sign-on” or SSO). Due to COTS limitations, full SSO
capability could not be provided in the IF v2.0 release. As the products mature, the IF will
provide more complete SSO function.

Access Control Requirements
The IF shall provide a mechanism to control access to GCSS-AF modernized applications and
their data. This is to include a role-based discretionary access control methodology, and shall
allow access controls to be applied down to the object and method levels. There shall be a
mechanism to administratively enable and disable user access, to be applied under various
circumstances (e.g. a user is inactive for a specified period of time). The access control
mechanism shall provide for distinguishing between “privileged” and non-privileged users for
various purposes.

Non-Repudiation Requirements
The IF is to provide general capabilities for both end user and system component digital
signatures. These features are not yet provided by the IF v2.0 release. Future IF releases will
provide digital signature capabilities.

Confidentiality Requirements
The IF shall provide mechanisms allowing all data transmissions to be encrypted by government-
approved means. (However, whether to actually apply encryption on any given channel is a
Government decision. Basic USAF direction is that transmissions that stay within the GCSS-AF
server enclave need not have encryption applied.)

Note Future Capability: An intrusion detection (IDS) capability for the IF is planned for
a future release; for IF v2.0, we rely on the IDS provided by CITS/BIP and DISA, at the
site boundary.

Virus checking is handled by DII COE anti-virus package(s). User sign-ons to servers shall be
severely restricted, and shall require a strong authentication mechanism. The IF solution shall
limit the use of mobile code (in conformance with recent DoD mobile code policy direction).

Integrity Requirements
IF and MA data residing on IF servers is to be protected from malicious or unintentional
alteration. The IF is responsible for recommending configuration guidelines for Windows NT,
Sun Solaris and HP-UX systems (i.e. the DII COE platforms), for thin clients (including
browsers) on Windows NT workstations, and for IF database products. The MA is responsible
for recommending configuration guidelines for non-NT workstations, for thick client
workstations, for servers not using DII COE platforms, and for non-IF database products that the
MA may select.

Audit and Alarm Requirements
The IF is required to maintain an audit trail for all security-relevant actions taken by, or on behalf
of, a human user. This requirement includes provision for end-to-end user accountability (i.e.
credential delegation). Audit collection and analysis is to be automated, as much as possible.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

236

Note Future Capability: The IF v2.0 release cannot provide full credential delegation,
due to COTS limitations, but will supply this capability as the products permit. The same
is true of audit automation.

PKI and Key Management Requirements
The IF is expected to be able to use DoD PKI certificates and keys. Issuance and management of
the certificates and keys is a Government responsibility.

Note Future Capability: User PKI services will be provided as DoD PKI plans mature;
a future IF release will include these services. The IF will inter-operate with DoD PKI
certificates (X.509v3), and will be capable of checking Certificate Revocation Lists
(CRLs) provided by DoD PKI services.

6.1.2 The ISO Security Model

The basis for the analytical model of security in GCSS-AF is the ISO 10181 (and 7498-2)
Security Standard. This standard is the basis for the IF security components, including:

Authentication

This package provides services needed for Identification and Authentication activities. This
includes user authentication, component authentication, handshaking involved with establishing
communications between software or hardware components, and user session maintenance. The
IF supports PKI Certificate authentication and the standard userID/password mechanism that
includes an enterprise logon web page.

Note Future Capability: As DoD PKI plans and implementation mature, a migration of
user authentication to a smart card authentication mechanism and CRL checking of
certificates is anticipated to be supported by the IF.

Component/server authentication services are provided requiring server-side PKI certificates.
Enterprise session management is provided such that a user need only log in once. The IF
requires the use of IBM Policy Director product to provide these services.

Access Control

This category encompasses services for controlling access to GCSS-AF objects such as
components, databases, individual data objects, etc. It does not include objects controlled at the
operating system level—GCSS-AF relies upon properly configured Operating System controls at
that level. (However, Access Control allows files to be defined as controlled objects in addition
to protecting them using OS controls.) Access Control provides services to establish access

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

237

control policies and data for the enterprise, to implement those policies during run-time actions
of the system, and to administer the user and object data relating to access control policies and
decisions. For the current release, implicit access control is provided for GCSS-AF objects on
the web servers and Servlet engines, and MQSeries queues and objects.

Note Future Capability: Implicit authorization services for CORBA objects or EJBs are
anticipated to be provided in a future release.

Explicit authorization can be implemented by the developer with the current release if required
prior to availability of the implicit services. IF authorization services are capable of providing
protection at several levels of granularity including application invoked access control down to
the attribute level. Application engineers shall determine the appropriate level for their
application objects, and to set up the required configuration and policy data accordingly. The IF
requires the use of IBM Policy Director product to provide these services.

Non-Repudiation

This category encompasses services that ensure a user cannot deny an action taken by him/her or
on his/her behalf, within the system. This includes providing capabilities for creating, verifying,
and properly storing digital signatures.

Note Future Capability: User- level digital signatures, and the capability for an
application to implicitly sign and verify signatures on Business Object Documents
(BODs) or other messages, are anticipated to be provided in a future release of the IF.
Full non-repudiation archiving is not provided, and is not currently planned due to lack of
COTS capabilities and the immaturity of relevant standards in this area, but may be
provided at a later date.

The IF requires the use of IBM Policy Director product to provide these services.

Confidentiality

This category encompasses services that ensure unauthorized individuals cannot view, modify,
or delete data, and that proper protection is applied to data and code during both storage and
transmission. This package provides encryption and communications security for securing all
GCSS-AF-originated messages beginning with the enterprise logon. These provisions include
the use of HTTPS, SSL, Secure RPCs, and LDAPS, as provided through Netscape browsers,
components of IBM Policy Director, IBM HTTP Server, IBM WebSphere, and Oracle ASO.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

238

Note Future Capability: Multi-Level Security (MLS) is not supported but is expected to
be a future requirement. Applications that require MLS in the meantime will have to
supplement the IF to satisfy these requirements.

Integrity

Integrity services are those that ensure system elements and data cannot be compromised or
modified by illicit actions. The majority of the services and measures, such as boundary
protection, required for Integrity is provided by the processing centers and base networks.
System oversight and administration services and measures are provided by ESM package and
by USAF operations and support. The IF Integrity capability provides only that information
needed to tie into these external elements and the IF security product, IBM Policy Director. In
addition, the IF requires the proper application of DISA STIGs to the host servers and software
that is delineated in the IF guidelines for NT and Unix configuration.

Audit and Alarms

This category encompasses services that record information about activities taken inside the
system, whether by human users or software components, and the storage and analysis of those
records. This includes creation of audit records, storage of audit records, creation of audit
reports, generation of dynamic on- line alarms, and analysis of events and records (whether at
runtime or post-mortem). It also provides services to define and administer audit policies, as
well as the technical features needed to implement the policies. It also includes intrusion
detection, although most of the technical solution for intrusion detection is specified as part of
the DII COE and CITS/BIP. The current IF audit provisions are limited to the facilities provided
by the supported security product, IBM Policy Director and IF Log Services to record system
actions.

Note Future Capability: The current IF does not provide audit reduction or alarm
posting. Alarm and alert posting is to be provided at the RSA processing centers using the
Tivoli Management System capabilities employed by DISA at an RSA. Processing
centers that do not utilize this Tivoli capability should plan on implementing the same
capability as DISA at an RSA. A future IF release should subsume Tivoli under the
Enterprise Systems Management capability. Audit reduction and reporting capabilities
are anticipated to be provided in a future IF release.

PKI and Key Management

This package provides services relating to the use of keys, especially those relating to PKI
certificates and keys. As USAF is responsible for the issuance and management of certificates,
this package only addresses those services dealing with certificate and key retrieval, utilization,
and protection within GCSS-AF.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

239

The IF supports server-side certificates, using the key protection provided by supported security
product (IBM Global Security Kit). The IF also supports client-side certificates for the purposes
of authentication and confidentiality services.

Note Future Capability: As DoD PKI plans and implementation mature, smart card
authentication and CRL checking of certificates is anticipated to be supported by the IF.

6.1.3 Non-Technical Aspects of Security

Technical security components are only the starting point of a security “solution”. This is true of
the IF, as of any distributed system. The non-technical elements of security include:

• Personnel security – includes security training, personnel screening and registration,
promoting security consciousness among system users, and related activities

• Physical security – includes control of physical access, visual access, access to storage,

EMSEC, system inter-connections, etc.

• Security management – includes conducting periodic risk assessments, defining and

supporting a consistent security policy, providing for incident response capability,
contingency plans, etc.

• Security testing and accreditation

• Procedural aspects – includes ensuring that system operations are handled in a security-

conscious manner, using defined and reviewed processes

• Administrative aspects – includes system operation, maintaining system records,

supporting system audits and forensic activities as needed, etc.

Provisions for these areas are a Government responsibility. Mission applications need to
coordinate activities in these areas with those of overall GCSS-AF management. In general, the
USAF and DISA share this responsibility, for GCSS-AF. See the GCSS-AF Ops and Support
Plan for details.

6.2 Authentication
The most visible service that the IF provides is the user authentication service. The IF supports
two mechanisms for user authentication: userID/password and PKI Certificate based
authentication.. All users will be authenticated via Policy Director WebSEAL. The significance
of the IF providing an authentication service is that it centralizes user registration and relieves
the MA from needing to provide another authentication service. Enterprise session management

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

240

is provided such that a user need only log in once30. The IF requires the use of IBM Policy
Director product to provide these services.

For applications that have audit and authorization requirements or other requirements needing a
user’s identity, the IF provides mechanisms for obtaining and passing this information amongst
applications. The details of these mechanisms are explained in the subsections.
Refer to Section 6 Securing the Application for an identification of the authentication
mechanisms that are used between the various components in the IF. These paths can visually be
seen in Figure 73: Operational Diagram: Authentication & Authorization in Section 6.1
Overview of IF Security.

Table 30: Authentication Matrix

Path Authentication
UserID /password
♦ Individual end user’s unique “name”
♦ Individual end user’s unique password
User registry is in an LDAP Directory. WebSEAL performs a
search of secUser for a dcePrincipal =<userid> . If success,
performs an LDAP bind with resulting Distinguished Name (minus
the secAuthority=Default tag) and the user supplied password .

Browser – WebSEAL

PKI Certificate Based
♦ Client Certificate
User registry is in an LDAP Directory.
WebSEAL performs a search of the LDAP directory for an object
that matches the Distinguished Name in the certificate. If it finds
one, it looks for a secCertDN attribute from the ifDNMap
objectclass that maps to a Distinguished Name of a Policy Director
user. If the Distinguished Name in the map matches a Policy
Director user, then the user is authenticated.

WebSEAL – Web Server One-way SSL authentication. WebSEAL rejects the connection if
the DN in the supplied certificate from the Web Server does not
match the DN configured in the junction.

WebSEAL – Web Server/WAS AE
Servlet Engine

UserID /password
♦ Individual WebSEAL server identity
♦ Individual WebSEAL server password
WAS AE configuration is setup to use the same user registry in the
LDAP directory as Policy Director. WAS AE performs a similar
process for authenticating the WebSEAL identity as the WebSEAL
did for the end user. WebSEAL identity and password maintained in
a configuration file on each WebSEAL installation.

WebSEAL – IBM SecureWay Directory UserID /password
♦ Individual WebSEAL server identity
♦ Individual WebSEAL server password

30 The system forces the user to re-authenticate after inactivity timeouts, overall session timeouts, and if the user
were connected to a different WebSEAL server whether at the same or different DECC-D IF installation.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

241

Path Authentication
Policy Director Servers—Policy Director
Servers
(includes WebSEAL – Security
Management Server and Authorization
Servers – Security Management Server)

UserID /password
via DCE using kerberos 5
DCE keytab file with a password stash file. See Policy Director
COTS documentation and the GCSS-AF installation procedures for
more information. Also, refer to IBM and Transarc DCE
documentation.

WAS AE Servlet Engine – IBM
SecureWay Directory

UserID /password
♦ Common WAS AE server identity
♦ Common WAS AE server password
Configured in the Global Security Settings

WAS AE Servlet Engine – Authorization
Servers

PKI Certificate·
x.509 certificate generated using the SSLSVRCFG tool during
installation/configuration. Configured in the aznapi.conf file.

WAS AE Servlet Engine – UDB (a.k.a.
IBMs DB2)

UserID /password
♦ Sas.server.props and sas.client.props WAS AE configuration

files
WAS AE Servlet Engine – WAS EE
Component Broker

UserID /password
♦ Application specific userid/password configured in the

applications property files. Procedurely this could all use the
same userid and password

WAS EE Component Broker –
Authorization Servers

PKI Certificate
• x.509 certificate generated using the SSLSVRCFG tool during

installation/configuration. Configured in the aznapi.conf file.
WAS EE Component Broker – DCE Cell
Directory Service

UserID /password
via DCE using kerberos 5
DCE keytab file with a password stash file. See Policy Director
COTS documentation and the GCSS-AF installation procedures for
more information. Also, refer to IBM and Transarc DCE
documentation.

WAS EE Component Broker – Oracle UserID /password
♦ Userid/password and connect string configured in CB SMUI.

Management Zones è <Application> Zone è Configurations
<Application> Config è RDBConnections è <Application>
Container

WAS EE Component Broker – UDB
(a.k.a. IBMs DB2)

UserID /password
♦ WAS EE Component Broker configuration file

Policy Director Servers – DCE Cell
Directory Service (CDS)

UserID /password
via DCE using kerberos 5
DCE keytab file with a password stash file. See Policy Director
COTS documentation and the GCSS-AF installation procedures for
more information. Also, refer to IBM and Transarc DCE
documentation.

WAS EE Component Broker – MQSeries
MQM

UserID /password
Userid/password and connect string configured in SMUI.
Management Zones è <Application> Zone è Configurations
<Application> Config è RDBConnections è <Application>
Container
It uses the operating system user that the application is running as if
no userid/password is supplied.

MQSeries MQM – MQSeries MQM UserID and password hardcoded in a DISA supplied Security Exit

The sub-sections that follow explain the authentication paths that affect MA development, in
more detail.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

242

For developers of applications that consist of static HTML links:
• Presume users are authenticated before the URL is invoked.
• If the application needs user authentication data (specifically, the user’s name/ID or the

roles/groups the user belongs to), it can get this information from the HTTP header; see
6.2.1.)

• If the application needs to use the group/role information it gains from the HTTP header, the
developer should coordinate with the GCSS-AF Enterprise Authority to ensure that the
group/role names match between Policy Director and the application.

6.2.1 User Authentication
All users are authenticated via a Policy Director WebSEAL server (an IF component) to gain
access to GCSS-AF. The two mechanisms supported by the IF are userID/password and PKI
certificate based authentication. Policy Director WebSEAL is configured to request a user
certificate and fallback to userID/password if no certificate is presented.

PKI Certificate Based Authentication
When a user enters a GCSS-AF protected URL31 into their web browser, an SSL handshake
occurs. The Policy Director WebSEAL server sends to the browser a list of Certificate
Authorities that it will recognize and requests the browser to send a user certificate. What occurs
next depends on the capabilities and configuration of the user’s browser.

If the user has a user certificate, the user will be prompted for a password to unlock the
certificate database32. The browser verifies the server’s certificate against the list of Certificate
Authorities that are recognized by the browser. The browser will display a list of the user’s
certificates that were signed by one of the Certificate Authorities in the list that the server sent in
the SSL handshake. It will prompt the user to select a certificate to use in this session.

Upon selection of the user’s certificate the SSL handshake continues. The browser sends the
certificate to the Policy Director WebSEAL server that verifies the user’s certificate. This
verification process includes checking the validity period (dates when the certificate is valid)
and verifying the certificate chain is signed properly. The GCSS-AF WebSEAL product does
not support CRL checking as of this time.

After verifying the certificate is valid, WebSEAL then checks to see if the Distinguished Name
on the user’s certificate maps to a valid user in Policy Director. WebSEAL searches for the
Distinguished Name in an LDAP directory with an auxiliary objectclass of ifDNMap. If it finds
an entry, it reads the Distinguished Name in the secCertDN attribute field. Lastly WebSEAL

31 GCSS-AF URLs use the HTTPS secure web protocol.
32 This process assumes that it was the first access to the certificate database or that the web browser was configured
to always prompt for the certificate database’s password.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

243

then searches for the mapped Distinguished Name to see if it points to a valid Policy Director
user.

Upon successful authentication, WebSEAL creates the user’s credential and goes through the
same process as with userid/password authentication for checking authorizations and providing
web pages.

If the server’s signer certificate, a.k.a. the Certificate Authority, is not in the browser’s list, the
user will be prompted if they wish to recognize the server’s certificate33. If a user has certificates
but opts not to use them34 or if the user does not have any user certificates, the user may select
“Cancel” at any of the certificate prompts. The WebSEAL server will recognize that a user
certificate was not presented and prompt the user for a userid and password. Some web browsers
have the capability of being configured to not display a notification to the user if the user had no
certificates that were supported by the server. This is an important configuration consideration
as many users will not initially have certificates. Users will not want to have to acknowledge a
dialog box indicating they don’t have a certificate every time they want to log onto GCSS-AF
with just a userid and password.

Some web browsers have the capability of being configured to prompt the user for the certificate
database password every time a certificate is requested. Some web browsers also have the
capability of being configured to not prompt the user to select a certificate if there is only one in
the list.

Userid/Password Authentication
If a user does not present a certificate during SSL negotiation because the user chose not to or
because the user does not have one, then WebSEAL will determine that the user is not
authenticated and present the user with an enterprise logon screen prompting the user for a
userID and password.35 WebSEAL will use the response to determine whether the user is
recognized by GCSS-AF. This mechanism provides the capability for a single enterprise logon
capability.

No matter which authentication mechanism is used, WebSEAL then passes the user information,
called a “credential,” on to the backend systems in the HTTP header. To allow the system to be
seamless, the MA has to use the information that is provided in the HTTP header to identify the
user within their application and trust that WebSEAL authenticated the user properly.

WebSEAL essentially acts as a reverse HTTP proxy and after reformatting the HTTP request,
makes the HTTP request to the backend Web Server. In the HTTP header, WebSEAL adds three
name/value pairs: IV_USER, IV_GROUPS, and IV_CREDS36.

33 Typically browsers will prompt the user if they would like to accept (recognize) this server’s certificate as valid
for this session or forever.
34 This may occur if a user other than the machine’s owner is allowed to use the machine.
35 Refer to the Tivoli SecureWay Policy Director Administration Guide v3.7 for details.
36 Refer to the Tivoli SecureWay Policy Director Administration Guide v3.7 and the Tivoli SecureWay Policy
Director Administration Guide: Additions and Corrections Version 3.7 for details.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

244

The MA has to use the information that is provided in the HTTP header to identify the
user within their application and trust that the user was authenticated properly by
WebSEAL.

COTS or GOTS applications may opt to integrate with Policy Director and these name/value
pairs directly. The preferred approach is to use the SessionInfoStruct structure for obtaining the
session information. This approach isolates the MA from any changes to the mechanism by
which WebSEAL provides the information. If an application has its own access checking
mechanisms, it will need to pull the authenticated user’s name (from IV-USER) and the user’s
role information (from IV-GROUPS). See Section 6.3 for details.

Example:

username = sessionInfoStruct.userSessionInfoStruct.userSecInfoStruct.username

6.2.1.1 Credential Passing
The SessionInfoStruct contains the user’s username, groups that the user is a member of, and
the user’s credential. This credential identifies the user to Policy Director when making
authorization decisions. The credential is an opaque structure. It contains the unique user
identifier of the user and the unique group identifiers for the groups that the user is a member of,
and a variety of other Policy Director specific information37.

It is the responsibility of the MA to pass along the SessionInfoStruct from the Servlet or JSP as
a parameter to the methods in the CORBA or EJB components so that access control decisions
may be made from within those components. From the PDC test component, PDCAddServlet
Servlet:

Figure 74: Example of PDCAddServlet Code

6.2.1.2 Single Sign-On

The IF security architecture provides for a single sign-on (SSO) capability to “back end”
applications, databases, Legacy systems, etc.

37 Refer to the Tivoli SecureWay Policy Director Authorization API: Java Reference Version 3.7 for details.

protected void persist(HttpServletRequest request, HttpServletResponse response, PartRecord
partRecord) throws Exception
{
getRemoteInterface(request).addPart(1, partRecord, getSessionInfoStruct(request));
}

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

245

Note Future Capability: Currently, a product limitation in WebSphere AE required the
channel for communicating SSO information (the BA header) to be occupied for
establishing the SSL connection for authentication and encryption between WebSeal and
AE; see “Security from Browser to EJB/CORBA Component” in Section 6.1, especia lly
Steps - 17 and 18, for a brief discussion of the details. In the next release of the IF, based
on a new version of AE, this issue is expected to be resolved, so that a user’s back end
identity information can be communicated to AE, to EE, or to non-WebSphere back end
systems.

6.2.1.3 Legacy and Database Considerations
The IF security architecture provides for connections to Legacy systems and databases. It does
NOT extend IF security features INTO these systems and databases, but provides for
coordinating information with them. (This means that existing Legacy security mechanisms,
including access checks and encryption, should be maintained until a modernized IF-based
component is implemented to replace the Legacy system.)

When connecting to a back end Legacy system, there are a number of options, depending on
where the connection is made. The simplest case is where WebSeal does the initial enterprise
authentication, then passes control to a Legacy Interface Component (LIC) or wrapper, which
can map the user’s enterprise identity to any Legacy identity(s) based on the user’s credentials
supplied by WebSeal. The MA team can write this LIC or wrapper based on the details of the
Legacy system in question. (Presuming the LIC is a first step in phasing out the Legacy system,
its design should also reflect interfaces needed throughout the planned modernization, and
provide for user identity to be passed as appropriate. But, in any case, the LIC should accept the
credentials passed by WebSeal in the header and should be able to map between that user
identity and userID(s) needed by the Legacy system being interfaced to.)

Note Future Capability: See “Security from Browser to EJB/CORBA Component” in
Section 6.1, especially the “Design Note Regarding Legacy Systems and Databases”, for
a brief discussion of the details necessitated by the current product set. Currently, the
same limitation described in Section 6.2.1.2 will prevent IF components behind WebSeal
(i.e. AE and EE) from being able to pass authentication information to Legacy systems.

It is recommended that when modernizing Legacy systems, every attempt be made NOT to have
multiple identities for individual users inside the Legacy system, or modernized Legacy
components. The maintenance of multiple identities is expensive, and the mapping of identities
inside the IF is computationally expensive and therefore impacts system performance. Ideally,
the modernized Legacy system should be designed to use the user’s enterprise identity, to
minimize both of these impacts.

The IF presumes that individual databases have their own provisions for security, and does not
attempt to replace these but to interface to them. For example, Oracle provides a security
module (Advanced Security Option or ASO). The IF presumes ASO is employed whenever
Oracle is employed.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

246

However, many databases expect users to logon to them individually. Ideally, an MA will be
able to define Identifications (ID) based on roles/groups, so that separate database logons for
individual users do not need to be maintained. (Ultimately, the IF will support audit reduction
methods that will remove the objection to this, that user actions can’t be tracked through group
logons – a delegated audit chain would permit the user to be tied to specific group- logon
actions.)

However, in the meantime, the IF architecture does provide for passing a user identity to a
database such as Oracle.

Note Future Capability: Currently, a product limitation in WebSphere AE required the
channel for communicating database logon information (the BA header) to be occupied
for establishing the SSL connection for authentication and encryption between WebSeal
and AE; see “Security from Browser to EJB/CORBA Component” in Section 6.1,
especially Steps - 17 and 18, for a brief discussion of the details. In the next release of
the IF, based on a new version of AE, this issue is expected to be resolved, so that a
user’s back end identity information can be communicated to AE, to EE, or to non-
WebSphere back end systems.

6.2.2 Application Authentication
There will be occasions where an MA needs to authenticate to the system with the application’s
own identity. An example of this includes wrappered Legacy systems that cannot determine
who the originating user is or be able to tie it back to a Policy Director user in order to create the
user’s credential. Another example would be when the MA needs one application to act on
behalf of a user to perform a function. For example the developer may not want to give an end
user direct access to a financial MA through an ACL, but they need the Supply MA to check to
see if the user has sufficient funds to procure material. In this instance, the developer needs to
authorize the Procurement MA to check for sufficient funds, and not the end user. Therefore the
developer needs to create Procurement MA identity(ies) and add them to groups and ACLs
following the Access Control process. These identities then need to be used to authenticate
between application components.

6.2.2.1 Application to Application Authentication
The IF provides the gcssafAuthenticateUser method that is part of the IFCBSecurityInfoAuthz
object in Component Broker to perform this function for the application. The sessionInfoStruct
created by this function can be passed as a parameter to CORBA and EJB methods just as the
sessionInfoStruct created for the user and passed in by the Servlet or EJB. To make
applications work properly, it may be necessary to add additional parameters, as required by the
invoked application. For example, the location parameter of the sessionInfoStruct is required
by the IF test components.

The process for planning for access control for application identities is the same as for end users.
See 6.3.1 Planning for Access Control to see the steps involved.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

247

Standards and Conventions
It is recommended that standards and conventions, particularly in the area of naming
conventions, be developed and maintained by the GCSS-AF Enterprise Authority and its
Operations and Support arm. As the number of applications grow, the ability to identify what
items are pertinent to the developer amongst hundreds or thousands of entries becomes
significant. One recommended convention is outlined below. Basically it would put the
responsibility of defining the functional domain (e.g. ILS) and location (e.g. Base Name or
Georef code, MAJCOM, Enterprise, etc) to the GCSS-AF Enterprise Authority. The definition
of the application and appID would be the responsibility of the MA coordinating with the
Operations and Support Organization to verify that the names are not currently in use. The
appID may be specific to an instance or to a class of components. Case is significant. The
recommendation is to standardize on uppercase to make it easier to implement. Mixed case rules
are harder for all parties involved to remember.

Application Identity Convention:

<domain>-<location>-<application>.<appid>
(e.g. ILS-BASE1-PDC.TRIGMON)

6.2.2.2 MQSeries Message Queue Manager Channel Exits
Authentication security for IBMs MQSeries Message Queue Manager is implemented via
channel exits. This task is an Operations and Support task.

The steps involved are:

1. Obtain an updated security exit from the DISA SSO with the name/password pairs for
the channels that are involved.

2. Alter the channel definitions to use the exit

Alter the Channel Definitions to Use the Exit
The exit works in pairs, one instance on each end of a channel pair. The exit is implemented by
associating it with a SENDER or RECEIVER channel.

For example:

Figure 75: Example Queue Manager Channel Exits Code

The SCYDATA parameter is a value that tells the exit what level of logging should be provided.
The log file itself is hard-coded and is something that should be specified to DISA SSO when the
exit is requested.

 ALTER CHANNEL(SENDER.CHANNEL) CHLTYPE(SDR) +
 SECEXIT(‘ChannelExit.dll(SecurityExit)’) SCYDATA(‘3’) REPLACE
 ALTER CHANNEL(RECEIVER.CHANNEL) CHLTYPE(RCVR) +
 SECEXIT(‘ChannelExit.dll(SecurityExit)’) SCYDATA(‘3’) REPLACE

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

248

Background
A security exit was created for IBMs MQSeries Message Queue Manager that provides basic
authentication via a userID /password pair associated with each channel pair. These are hard-
coded in a channel array within the exit as no acceptable secure repository could be identified
that would meet DISA Field Security Office guidelines. Accordingly, for each new system
implementation the user shall request a custom exit from DISA SSO.

Note: The security exit controls authentication between Message Queue Managers. It does not
control submission of a message from a client. The security exit only supports normal channels
and does not support cluster channels.

Note: It is planned that a COTS product (Policy Director for Messaging) will replace this
security exit in the future.

Mechanics
The exits themselves interact by exchanging what are called handshake messages. When a
SENDER channel is started, the RECEIVER partner exit is initiated. In our case, the receiver
exit defers control. The SENDER exit then is given control and sends a handshake message
containing the userIDs and password combination from the hard-coded channel table within the
exit. This handshake message is not encrypted. The RECEIVER exit is then given control and
attempts to validate the userIDs/password combination using whatever security interface is
appropriate for the operating system in question. For example, on Windows NT the Win32
LogonUser() function is used, on AIX the getpwnam() function is used, etc.. If the RECEIVER
channel is able to validate the userIDs/password combination it returns control to MQSeries
indicating that message flow may then begin. If not, it returns control indicating that the channel
is to be stopped. In effect, it provides the same level of security as does an ftp daemon verifying
a user.

To provide confidentiality services for MQSeries traffic over the WAN, DISA has implemented
Virtual Private Networks (VPNs). The handshake including the userIDs and password would be
encrypted on the WAN over channels between MQSeries Message Queue Managers. Within the
GCSS-AF enclave the MQSeries traffic will be in the clear.

6.3 Access Control
Access Control (or Authorization) is the aspect of information security that limits access to
computer resources, especially programs and data, to protect them against unauthorized
modification, loss, or disclosure. (There is an aspect of access control involving limiting access
to physical computer resources and facilities. This aspect is not taken into consideration here,
because on GCSS-AF, it is under control of the USAF and is dealt with in the Ops and Support
documentation.)

In this section, we will explain the general flow of access control checks, as background. Then,
in Section 6.3.1 Planning for Access Control, we describe the actions needed to plan for applying
access controls to the MA. In Sections 6.3.2 Setting up ACLs through 6.3.4 Setting Up User

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

249

Data, we explain how various types of access data are set up in Policy Director. In Section 6.3.5
Access Control and Web Objects, we show how access checks are programmed using the
services provided with the IF.

For developers of applications, that consists of static HTML links:
• If the application does not require access checks beyond the initial access to the main

URL/link, the developer does not need to worry about this section.
• If the application (product) performs its own access checks, the developer will need to

pick up the user’s name and groups information from the HTTP header (cross-
reference Section 6.2). In this case, the developer shall ensure that the group names
that are placed into Policy Director for the “MA” match the ones they will be checking
against in the application/product’s access database.

• If the application wants to use the IFs access check methods, the developer needs to
read this section and do the appropriate design and development.

• In any event, it will be useful for the developer to read Section 6.3.5 Access Control and
Web Objects.

Access Control Concepts
In the IF, the access control mechanism is based on the tools provided by Policy Director, which
in turn implements concepts common to industry-standard authorization methods. The basic
concepts are:

User – A “user” is a representation of an identified and authenticated human user.

Group – A “group” is a representation of multiple users who share common access rights
to objects and functions. This corresponds to the term “role”; i.e. users who have the
same “role” will be assigned to a “group” together. (In other words, the IF provides a
“role-based access control” or RBAC mechanism, via Policy Director.)

Access Control List (ACL) – An “ACL” is a representation of the access rights applied
to an object or function. It represents the rules that shall be satisfied in order for a user to
be authorized to access an object or perform a function.

Policy – In this context, a “Policy” is the combination of data about users, groups, and
ACLs, that embodies the business rules about who should be allowed to do what inside
the application or system.

The principle that ties these concepts together is this:

To perform a requested function or access a requested data object, the policy shall show
that a user is assigned to a group that has the access right corresponding to the ACL for the
requested function/object.

For example, John Smith is a user who needs to be able to perform operations on data objects of
the Parts class. We create a user entry for John Smith inside Policy Director. We create a

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

250

Group inside Policy Director called Supply Clerk, to which John Smith’s userID is assigned.
We assign an ACL to Parts, inside Policy Director, and include Supply Clerk as a group that has
certain access rights according to that ACL. Now, when John Smith sits down at his
workstation, logs on, and requests to perform some function on a Parts object, the request is
passed to Policy Director, which sees that John is authenticated (from his logon), that he is a
Supply Clerk, and that Supply Clerk is a group that satisfies an ACL entry for that function on
the Parts object, so Policy Director authorizes John to perform the requested function.

(For a more detailed explanation of these concepts, and how they apply in Policy Director, see
Chapter 7 “Understanding Access Control” in Tivoli SecureWay Policy Director Administration
Guide Version 3 Release 6.)

Note that from the perspective of Policy Director, an MA is a “third party” application, so the
explicit access checks in the MA will use the aznAPI as explained in the Administration Guide.
However, in GCSS-AF, we provide a Java interface to the API, to buffer the developer from
some of the complexities of the API, to avoid the need for MA code changes as the API is
updated, and to handle some of the associated data structures without requiring the developer to
know their details.

Access Control Flow
General flow of access control in Section 6.1 Overview; discuss ‘patterns’ of access control here
(use Ifs per this section; do own internally using authentication data passed by WebSeal; just use
WebSeal’s check on initial URL.)

Access Control Administration
In the deployed environment, DISA and the GCSS-AF Ops and Support organization are
responsible for maintaining the IF access information. However, during development, MA
teams may need to be able to set up test data for access checking. They are referred to Appendix
A of the Policy Director Administration Guide for information on the use of the ivadmin tool for
this purpose.

6.3.1 Planning for Access Control
The MA engineering team is responsible for planning and defining the data needed to ensure
proper access controls are applied to MA data, functions, and menu items. The access control
data will be entered into Policy Director, which performs the actual access checks. The MA
engineering team will also need to decide at what level to request explicit access checks inside
MA software, and to include the necessary software calls in their design and development.

IMPORTANT – This discussion is about access control for applications, as distinct from access
control to individual boxes, operating system file access controls, etc. These are also important
elements of an overall security approach. However, while the IF provides recommended
“lockdown” procedures for IF servers, including recommended registry settings to limit access to
those servers, the ultimate responsibility for boxes and their contents rests with the USAF (for
workstations at bases) and DISA (for workstations and servers at DECC-Ds). Therefore, we

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

251

presume those organizations adequately address these elements and we limit this discussion to
application-specific aspects of access cont rol, especially those relating to MA data and functions.
(Do be aware that application teams may provide input to USAF and DISA regarding access
settings that need to be applied to files or folders that are specific to that application. The
process for determining this information is similar to that described below.)

Principles of Access Control

The essential objectives access control methodologies will achieve are:

1. Ensure users have only the access rights required to perform their duties;
2. Limit access to especially sensitive resources to a minimum number of users with special

privileges;
3. Restrict users from performing unauthorized functions (through automated means, as

much as possible).

The objectives summarize the purpose of the IF access control requirements. We expect that
they will also summarize the access control requirements of most MAs. If an MA has additional
requirements that do not fall under one of these objectives, that MA may require additional
analysis or technical support for providing access control.

Note: Access checks can be either explicit or implicit. Explicit access checks require specific
software additions or changes to application code. The IF performs Implicit access checks
automatically, without changing application software to provide for them. The advantage of
explicit access checks is that they allow an application to control where checks are performed,
and to retain control over the enforcement of access. (I.e., the application software receives the
result of an access check and decides what to do about it, whereas an implicit check will be
configured to automatically perform a specific action when a check succeeds or fails). The
disadvantage of explicit checks is, obviously, that they do require the writing of extra code.

In the IF, all access checks on MA data and objects are explicit.38 It is the MAs responsibility to
ensure proper access controls are established and applied for MA information (using the IF tools
and guidelines outlined below).

Information Sources

Information to use in setting up access controls will come from sources such as:

1. Legal documents (e.g. Computer Security Act, Privacy Act, DoD controls, etc.)

38 This is a result of COTS functionality in the current releases of Policy Director and WebSphere. In upcoming releases of these products, IBM
expects to provide support for implicit as well as explicit access checks. Once these releases are integrated into the IF, MA teams will be able to
choose which kind of access check to implement.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

252

2. Existing security classifications (e.g. data that is already identified as Sensitive, Secret,
etc.)

3. MA Requirements (if explicit requirements associated with access do not exist, the MA

engineering team should derive such requirements)

4. Use cases

5. Functional experts

Key Steps in Providing for Access Control

The basic steps an MA team needs to perform in this area are:

1. Determine what resources, individual, or collectively, need protection.

2. Decide what job roles, or groups of users, will require what type(s) of access to each
resource (or group of resources). Derive Group data from this information.

3. Decide how to determine which MA users to place in each role or group that is established
in the second step. Derive user data and registration guidance from this information.

4. For each resource listed in Step - 1, determine what level and type of protection is required
(relying heavily on the Group data derived in Step - 2). Derive ACL data from this
information. Also, decide where MA software needs explicit access checks, based on the
level of protection analysis.

5. Coordinate with the GCSS-AF Operation Authority to set up the ACL, Group and User
data in Policy Director.

6. Program and test the software based on the decisions in Steps - 2 through 4. Adjust the
ACL, Group and User data, if needed.

7. Coordinate with the GCSS-AF Operation Authority and DISA, to migrate the application,
including its access control data, to the operational environment on the IF.

Guidance on performing each of these steps is available in the rest of this section and its sub-
sections. (Note: Although they are presented here as discrete steps, in reality, the process should
be regarded as iterative; i.e. it will be valuable to revisit earlier steps as more information is
obtained.)

Step 1 - Determine Resources Requiring Protection

The first step is to determine what MA information and functionality may require protection.
This assessment needs to be performed in conjunction with the owner(s) of each resource the

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

253

MA shall protect. In this step, the objective is not to define the kind or level of protection, only
the objects or a function to which protection needs to be applied.

The output from this step will be a list of data objects, MA functions or components that require
protection from unauthorized access.

This step occurs during the MAs Requirements Analysis and Architecture phases of
development.

Resources that may need to be assessed during this step include:

A. Databases
B. Database partitions
C. Individual data objects (rows)
D. Files or folders
E. MA software components
F. MA functions (methods on MA objects, in the OO sense of “object”)

(Again, recall that physical objects, such as computer system units, are protected by appropriate
physical and personnel controls as determined by USAF and DISA, so they should not be listed
here. Also, any data that does not require access control, such as information that is freely
available to the public, may not need to be listed here, unless it is combined with more sensitive
data during storage or presentation. For example, a public web page’s contents may not need to
be access controlled for reading, precisely because it is “public.” At the same time, the
developer may need to control what actions can be taken even on public objects. So, for
example, the source file for that public web page may need to be controlled for writing, because
it could otherwise be defaced by a cracker in a way that would be embarrassing to the Air Force.)

Note that the data objects that are listed will depend in part on the nature of each MAs specific
activities. For example, an MA such as Finance will work heavily with documents, i.e. files in
folders. Another MA, for example Supply, may be concerned solely or primarily with more
granular data stored in databases. Therefore, the list of data objects is likely to vary from MA to
MA, and providing precise guidance for what to include is not possible without knowing the
details of each MAs environment.

However, all MAs will provide user-callable functions, and will have one or more software
components. All functions that an MA will provide to users should be listed at this stage, along
with any software components that may be invoked by a user. For example, in our Pseudo-
Supply test software, we provided two components (Parts Data Collection, and Requisition), and
one or more functions under each (Get Part, View Parts List, Add Part, Use Part, etc.).

Step 2 - Derive Group Data

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

254

The next step is to define the Groups that will represent user roles. This activity should flow
directly from the previous one, as the developer is defining resources that require protection, they
should be thinking about Groups that will use each resource. In this step, the developer will be
completing the list of Groups and documenting how they relate to the resources; the individual
ACLs that correspond will be finalized in Step - 4.

The MA should also look to see what roles are currently defined in the system that they might be
able to re-use. The Operations and Support Organization and the Security Organization need to
be employed to aid in this analysis. Before re-using existing roles, it is necessary to ensure the
rules for adding users to the role are well defined and agreed to. Otherwise when other MA
using the same role have slightly different criteria for adding users to the role, undesired access
may be granted to the MA.

Note: One of the major benefits of the IF is the ability to re-use existing role/group definitions.
Each MA doesn’t necessarily have to create its own unique role/group. If all Gunter AFB users
can access the TDY MA and the Benefits MA, then a single group called “GUNTER AFB
USERS” can be created; i.e. there do not need to be separate groups for TDY users at Gunter and
Benefits users at Gunter. Any new MAs requiring that user set can re-use that Group. This
consideration will be especially important to an MA using data shared with other MAs.

It is necessary for the MA and the Operations and Support Organization to maintain which
groups an MA uses. The MA needs to be informed when a change, to the criteria for adding
users to the groups, is being requested. All MAs need to agree to the change. If the decision to
make the change is not unanimous, the “losing” MAs will need to select/create a different group.
It is also recommended that the list of groups the MA uses be maintained so that the Operations
and Support Organization can periodically poll the MAs to verify that groups are still required.
Otherwise, orphaned groups that are not used by any MAs clutter the system.

In general, the developer should define as few Groups as possible while still allowing
needed functionality. Note that there is a pre-defined group called “any-authenticated” that can
be used to reduce the number of Groups needed – it represents all users who have valid
credentials to log onto the system. For many applications, a significant number of actions (such
as reading public files) may be able to be covered by this group, thus avoiding the need to define
several groups to limit access to these actions.

In our Pseudo-Supply test software, we defined these groups or roles:

Supply Clerk – users who read parts data and place parts orders. These users were sub-
divided by base; i.e. some could only read parts data for Base 1, some for Base 2, etc; this
restriction was to simulate the “one base, one wing” concept.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

255

Maintenance Clerk – users who enter new parts and update existing parts entries in the
database. We also divided these users by base and MAJCOM.

Admin – users who administer the Parts Data Collection databases. Here we defined
administrators for each database – a base- level admin for each base’s PDC, an enterprise
admin for the USAF enterprise PDC, and a “super admin” with access to all levels of PDC
database. (Note that this is NOT the same as a system-level “super” admin or “root” user.)

In all, there were 15 groups defined to handle this set of roles.

In the configuration of the test applications, some users were configured to support multiple
bases. If the MA has a consistent grouping of users, like MAJCOM users that support that
support multiple bases, a group for each of the MAJCOMs could be created. It could be
included in the ACLs, to be discussed below, for the given bases. This reduces administration,
because it would not be necessary to add MAJCOM users to each and every base group that they
is that they need access to. The MAJCOM users can be added to a specific MAJCOM group that
provides access to only the specified resources within the base. The process for defining groups
and ACLs is intertwined and should be re- iterated a few times for optimization.

The output from this step should be a list of Groups (roles) to which users can be assigned. The
complete list should include all groups/roles needed to perform all functions in the application in
an authorized manner consistent with the MAs requirements. In other words, there should be no
case where a user would need another (undefined) role in order to perform a needed function
inside the MA.

This step should be performed during the MAs Design phase of development.

Step 3 - Derive User Data

The output from this step should be a list of user attributes and business rules that are needed in
order to assign users to Groups. It need NOT include an explicit list of all users, only guidance
to those who register users to assist them in ensuring each user is assigned to the Groups
appropriate to that user’s job(s). This involves information specific to each MA, is not peculiar
to the IF, and is thus difficult to provide step by step instructions for.

It may involve consideration of some or all of these considerations:

• The user’s rank

• The user’s organization or command or MAJCOM

• The user’s security clearance level

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

256

• The user’s location(s) – especially, what location(s) is the user allowed to read or
write data for, even though they may not be physically at those location(s)

• Any temporary assignments the user may be directed to

• Specific characteristics required by an MA (e.g. can a user handle data for nuclear
weapons? For specific aircraft types? For restricted personnel files? Etc.)

It is necessary to ensure the criteria, the attributes and business rules, for adding users to the
role(s) are well defined and agreed upon. Otherwise, when other MAs using the same role have
slightly different criteria for adding users to the role, undesired access may be granted to the MA.
As identified in the previous section, it is incumbent on the Operations and Support Organization
to notify the MA of a change to the criteria of adding users to a group. This notification allows
the MA time to voice any concerns about the change particularly if the change may provide
unintentional unauthorized access to an MA and its data.

This step should be performed during the MAs Design phase of development.

Step 4 - Determine Level and Type of Protection

Virtually all information requires some kind of protection. However, some information is of
such low criticality, or is so generally available, that its damage or deletion will cause no
practical loss. Likewise, some information is of such high criticality or sensitivity that its
damage or deletion could be catastrophic. Therefore, an essential action an MA team shall
perform is to decide which of the resources under the MAs control fall into which levels of
criticality.

The output from this step should be a set of access categories and the rules or methods of
determining how any object or function is allocated to a category. The criteria for this
determination should be objective, carefully defined and documented, and based on the risks.
The categories and rules should be expressible in the form of ACLs that can be entered in Policy
Director.

This step should be performed during the MAs Architecture phase of development.

This is primarily a risk and cost/benefit assessment activity. That is, the monetary and system
performance costs of applying access controls to a particular object shall be weighed against the
losses that could be incurred if the access controls are not applied. The costs of protection
should not exceed the benefits of protection.

For each data object or function that was listed in Step 1, provide answers to some basic
questions:

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

257

Does this item require access protection? (This most basic risk assessment should be
performed first for all items. Only those that are judged to require explicit access checks
should go through the rest of this analysis.)

If it does, what actions require protection? For example, the MA may have items that can
be read by anybody, but can only be written to by users with specific roles.

Note that the Create, Read, Update, Delete, Execute actions 39 are provided for in Policy
Director. Other actions can be defined to Policy Director so that ACLs can be applied to
them. Therefore, one of the decisions the MA engineers need to make is whether other
actions will be performed on this item, and to document them. Typically, in an object-
oriented design, these actions will be represented as methods on an object; in GCSS-AF, this
will be a CORBA object, or an Enterprise JavaBean.

Do the permissions vary by location or organization? For example, in our Pseudo-supply
example, there were base supply databases and an overall AF enterprise supply database. We
presumed a requirement to limit access to the overall enterprise database to a restricted set of
users. We also presumed a requirement that limited access to each base database to users
with certain roles pertaining specifically to that individual base. Therefore, we needed to
provide for access rules based on location. Some MAs will need similar rules, some may
need an additional “region” check, and some may need to limit access by MAJCOM or unit.

Do the permissions vary by security classification? I.e., does the MA handle items that are
classified? If so, how are the classified items partitioned from unclassified ones, and what
rights does a user need to access each classification? (Keep in mind that the IF is not
designed to handle material above the Sensitive Unclassified level.)

At what level should the access checks be applied? In general, it is recommended to apply
access checks at the ‘highest’ or ‘outermost’ level (of the data hierarchy, menu or folder tree,
etc.) that satisfies security requirements, in order to reduce processing overhead. For
example, it is better to apply access checks to an entire database than to individual items in
the database. The ideal situation is to place objects being protected into a hierarchy, and then
apply ACLs at the highest level(s) in the hierarchy that provide the needed protection.

Does the MA have any unique or MA-specific rules that affect access to data objects or
functions? For example, in the supply domain, there are a number of special categories of
parts – hazardous materials, nuclear materials, etc. – that require special permissions to order
or handle.

Are there any special, temporary, or emergency conditions that may affect access rules?
For example, does the MA have data that should be restricted under normal circumstances,
but may have those restrictions relaxed under wartime deployment conditions?

39 See 6.3.2 Setting up ACLs for further details on the definitions of the actions/permissions.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

258

The answers to these questions will provide the basic data the MA team needs to define
the ACLs on the items listed in Step 1.

In general, the process to follow should be:

A. Determine the bus iness rules to apply in deciding access to each item in the

hierarchy. Push each rule as high in the hierarchy as possible. For example, if
there is only one business rule governing who can read any item the MA shall
protect, then apply this rule to the root level of the hierarchy, not to each item
individually.

B. Derive the ACLs corresponding to each rule or set of rules at each point in the

hierarchy.

C. Derive the hierarchy of objects and functions. (Note: As much as possible, this
hierarchy should be mapped to the menu hierarchy discussed in Section 5.2.

See Table 31: Pseudo-Supply Test ACLs, for a list of ACLs that were created for the
Pseudo-Supply test application.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

259

Table 31: Pseudo-Supply Test ACLs

ACL Name Description Groups And Permissions
ACL-ILS-BASE1-RESTRICTED40 This ACL is used strictly for filtering the menu system.

The audit flag is turned off because the menu filtering
system was checking to see if the user had access and
no access was actually being attempted. The menu
system has a separate object space, /IF-Menu, in Policy
Director.

This ACL was created to allow all of our Pseudo-
Supply test application administrators for a given base
and the more generalized administrators to view a
menu item. 41

user cell_admin abcTdmlrx
group ivmgrd-servers Tl
group iv-admin abcTdmlrx
group GCSS-AF-Admins abcTdmlrx
group ILS-Admins abcTdmlrxKRUDE
group ILS-Base1-Admins abcTdmlrxKRUDE
any-other42 T
unauthenticated A

ACL-ILS-BASE1-CLRKMAINT This ACL is used strictly for filtering the menu system.
The audit flag is turned off because the menu filtering
system was checking to see if the user had access and
no access was actually being attemp ted. The menu
system has a separate object space, /IF-Menu, in Policy
Director.

This ACL was created to allow all of our Pseudo-
Supply test roles for a given base and the appropriate
administrators to view a menu item.

user cell_admin aAbcTdmlrx
group ivmgrd-servers ATl
group iv-admin aAbcTdmlrx
group GCSS-AF-Admins aAbcTdmlrx
group ILS-Admins aAbcTdmlrxKRUDE
group ILS-Base1-Admins aAbcTdmlrxKRUDE
group ILS-Base1-Supply_Clerks ATRr
group ILS-Base1-Maintenance ATKRr
any-other AT
unauthenticated A

40 Similar ACLs were created for the Base2, Base3, and Enterprise “locations” with the groups changed to reflect the appropriate location. This applies to all of
the ACLs listed used by the IF test components.
41 The menu system checks the IF Menu Object space for the menu against the “r” lower-case r READ permission.
42 any-other is the syntax used by the ivadmin command-line tool for modifying the ACL. It is displayed as any-authenticated in ivconsole, the Policy Director
Administrator GUI.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

260

ACL Name Description Groups And Permissions
ACL-ILS-BASE1-PDC-
MAINTENANCE

This ACL is used strictly for filtering the menu system.
The audit flag is turned off because the menu filtering
system was checking to see if the user had access and
no access was actually being attempted. The menu
system has a separate object space, /IF-Menu, in Policy
Director.

This ACL was created to allow the appropriate base
Maintenance personnel to view a menu option as well
as the appropriate administrators, but not the Supply
Clerks.

user cell_admin abcTdmlrx
group ivmgrd-servers Tl
group iv-admin abcTdmlrx
group GCSS-AF-Admins abcTdmlrx
group ILS-Admins abcTdmlrxKRUDE
group ILS-Base1-Admins abcTdmlrxKRUDE
group “ILS-Base1-Supply_Clerks” T
group ILS-Base1-Maintenance TKRr
any-other T
unauthenticated A

ACL-ILS-BASE1-REQUISITION This ACL is used strictly for filtering the menu system.
The audit flag is turned off because the menu filtering
system was checking to see if the user had access and
no access was actually being attempted. The menu
system has a separate object space, /IF-Menu, in Policy
Director.

This ACL was created to allow the appropriate base
Maintenance personnel to view a menu option as well
as the appropriate administrators, but not the Supply
Clerks.

user cell_admin abcTdmlrx
group ivmgrd-servers Tl
group iv-admin abcTdmlrx
group GCSS-AF-Admins abcTdmlrx
group ILS-Admins abcTdmlrxKRUDE
group ILS-Base1-Admins abcTdmlrxKRUDE
group ILS-Base1-Supply_Clerks TKEr
group ILS-Base1-Maintenance TKEr
any-other T
unauthenticated A

AUD-ILS-BASE1-CLRKMAINT This set of ACLs (Base1-3, & ENT) protects the ILS
Pseudo-Supply test MA. Each role/group is given the
appropriate access as defined by our design using the
KRUDE permissions43 defined in Section 6.3.2.

The set of permissions in this ACL has the Audit
permission set (upper case A) as this is ACL is
effectively attached to the methods of the application.
This ACL is physically placed at the application level
and the ACL flows down the sub objects: modules,
interfaces, and methods.

user cell_admin aAbcTdmlrx
group ivmgrd-servers ATl
group iv-admin aAbcTdmlrx
group GCSS-AF-Admins aAbcTdmlrx
group ILS-Admins aAbcTdmlrxKRUDE
group ILS-Base1-Admins aAbcTdmlrxKRUDE
group ILS-Base1-Supply_Clerks ATRr
group ILS-Base1-Maintenance ATKRr
any-other AT
unauthenticated A

43 The KRUDE permissions are defined in the following section.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

261

ACL Name Description Groups And Permissions
AUD-ILS-BASE1-
REQUISITION

This set of ACLs (Base1-3, & ENT) protects
the ILS Requisition test MA. Each role/group
is given the appropriate access as defined by
our design using the KRUDE permissions 44
defined in Section 6.3.2.

The set of permissions in this ACL has the
Audit permission set (upper case A), as this is
ACL is effectively attached to the methods of
the application. This ACL is physically
placed at the application level and the ACL
flows down the sub objects: modules,
interfaces, and methods.

user cell_admin aAbcTdmlrx
group ivmgrd-servers ATl
group iv-admin aAbcTdmlrx
group GCSS-AF-Admins aAbcTdmlrx
group ILS-Admins aAbcTdmlrxKRUDE
group ILS-Base1-Admins
aAbcTdmlrxKRUDE
group ILS-Base1-Supply_Clerks ATKEr
group ILS-Base1-Maintenance ATKEr
any-other AT
unauthenticated A

44 The KRUDE permissions are defined in the following section.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

262

The output should also include a mapping of Groups to ACLs that were defined in step 2.
Each ACL should have at least one Group that maps to it. Each Group should map to one
or more ACLs. If there are any “orphan” ACLs or Groups, it indicates an error in the
analysis, and steps 2, 3 and 4 should be re-visited.

Step 5 - Set Up Data in Policy Director

The output from this step should be a copy of Tivoli Policy Director with the ACLs,
Groups, and User data laid out in accordance with the output from steps 1-4. (Note that
this is presumed to be in a test environment. Once the use of the data and associated MA
software is validated in the test environment, including any updates to the data, the
required setup should be formally documented. It will then be able to be entered into the
production environment.)

This step should be performed during the MAs Design and Code phases of
development.

Step 6 - Develop Access Control Checks in MA Software

Based on the analysis performed above, the engineering team can now code explicit
access control checks that were identified above in the MA software. See Section 6.3.5
Access Control and Web Objects and its subsections.

The output from this step will be MA software with access checks, ready to be unit and
string tested.

This step should be performed during the MAs Design, Code, and Test phases of
development.

6.3.2 Setting up ACLs

6.3.2.1 ACLs

A group of permissions is called an Access Control Lis t (ACL) or policy template (See
the Policy Director Administration Guide, chapter 7). Users and groups and their
permissions are listed within an ACL. ACLs define user and group Read, Write, Execute,
and Delete access to objects, as well as numerous other restrictions and permissions.
When the ACL is applied to an object, the policy, which that ACL represents, is enforced
on that object. For example, if a policy were implemented to require authentication of all
users on an object O before being read, the unauthenticated user would be added to the
template with no access permissions:

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

263

The Policy Director Authorization Server compares user credentials to permissions in
ACLs to determine what a user is allowed to do.

ACLs define which groups or users are allowed different types of access. An ACL can
be applied to any protected object at any point in the Policy Director namespace. In
Policy Director, the protected object namespace is a hierarchy of objects that can be
protected. Installed with the product are the root containers /WebSEAL, /NetSEAL, and
/Management. (Users and Groups are stored and displayed separately within the Policy
Director Management Console.)

All objects existing under the applied point will inherit parent access control lists.
This is a very powerful mechanism that permits applying access controls to large groups
of objects with one action. Developers should use it whenever possible, by carefully
defining their object hierarchies to take advantage of common access needs. This
minimizes both development time and maintenance expense.

Other permissions that can be granted/restrictions that can be applied include:

• IF-Designated Method level access control attributes (K,R,U,D, & E)
• Custom Mission-Application Defined permissions (shall be approved by the

GCSS-AF Enterprise Authority)
• Whether user access to an object should be audited
• Ability to attach an ACL to object
• Ability to Traverse to the next object down in the namespace
• Integrity of object access
• Privacy of object access (P permission)
• External (third-party) authorization requirements

Additionally two different ACL-specific users are:

All users (any-authenticated) permissions on an object
Unauthenticated user’s permissions on an object

Each ACL has a name, and the name applied to an ACL should represent the security
policy of the specific configuration. For example, the ACL applied to a protected object
namespace root object should indicate that it is the master default security policy and that
it is for that root object of the namespace.

A single character identifies permissions that will be checked for access decisions. The
following permissions should be used for method-level access control and fine-grained
access control (The methods referenced refer to methods within Component Broker):

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

264

Table 32: Access Control List

K Create
Required by any method with the prefix “create” in its operation name. For example, the
createFromPrimaryKey method on IHome requires that the developer possess the “K” permission.

R Read
Required by any method, including readable attributes, with the prefix “get” in its operation name. For
example, the getHome method on the Imanageable interface and the priority_filter attribute on the
CosNotifyChannelAdmin::ConsumerAdmin interface (when used as a getter) requires that the developer
possess the “R” permission.

U Modify (update)
Required by any method, including writeable attributes, with the prefix “set” in its operation name. For
example, the set_qos method in the CosNotification:QoSAdmin interface, or the priority_filter attribute on
the CosNotifyChannelAdmin::ConsumerAdmin interface (when used as a setter) require that the developer
possess the “U” permission.

D Delete (remove)
Required by any method with the prefix “remove” in its operation name. For example, the remove method on
the CosLifeCycle::LifeCycleObject interface requires that the developer possess the D permission.

E Execute
Required by any other method not satisfying the conditions indicated above.

For the Integration Framework Test applications, the actions are mapped as follows:

Figure 76: IF Test Applications Actions

The MA engineering team will need to determine or define the mapping between each
function/method requiring an access check and the PD Action they are making the access
decision for.

Policy Director has a number of built- in permissions in four categories: Base, Generic,
NetSEAL, and WebSEAL. They are listed below. See the Policy Director
Administration Guide page 86- for descriptions on their function.

Table 33: Policy Director Built-in Permissions

Add Part = K
Query Part = R
Update Part = U
Remove Part = D
AddRequisition=E

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

265

Generic
(d) Delete
(m) Modify
(s) Server Admin
(v) View

NetSEAL
© Connect

 (p) Proxy

Base
(a) Attach
(A) Audit
(b) Browse
© Control
(g) Delegation
(I) Integrity
(P) Privacy
(T) Traverse

WebSEAL
(l) List Directory
® Read
(x) Execute

6.3.2.1 Application of ACLs
In “Guidelines for a Secure Namespace” (Administration Guide, p 92), the following
guidelines are listed:

“These guidelines provide information that helps to make the namespace secure:

1. Set high- level security policy on container objects at the top of the

namespace. Set exceptions to this policy with an explicit ACL on objects
lower in the hierarchy.

2. Arrange the protected object space so that most objects are protected by

inherited rather than explicit ACLs.

3. Inherited ACLs simplify the maintenance of the tree because they reduce

the number of ACLs the developer shall maintain. This lower maintenance
reduces the risk of an error that could compromise the network.

4. Position new objects in the tree where they inherit the appropriate

permissions. Arrange the object tree into a set of subtrees, where each
subtree is governed by a specific access policy. The developer determines
the access policy for an entire subtree by setting an explicit ACL at the
root of the subtree.

5. Create a core set of ACL templates and re-use these ACLs wherever

necessary. Because an ACL template is a single source definition, any
modifications to the template affect all objects that are associated with this
ACL.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

266

6. Control user access using groups. It is possible for an ACL to consist of
only group entries. Adding users to or removing users from these groups
can control access to an object by individual users efficiently.”

“Sparse ACL model for ACL inheritance” (Administration Guide, p 96)
details how to create a Sparse, or inherited, ACL model.

 “Any object without an explicitly attached ACL inherits the ACL of its

nearest container object with an explicitly set ACL. In other words, all
objects without explicitly attached ACLs inherit ACLs from container
objects with explicitly attached ACLs. A particular chain of inheritance is
broken when the developer attaches an explicit ACL on an object.”

 This means that one can attach an ACL at the root of a namespace, and the

permission settings of that ACL flow down to any child namespace
entries.

6.3.3 Setting Up Groups
Groups are also referred to as “roles” because of their ability to divide users by job or
responsibility. Policy Director allows the storage of its groups in an LDAP directory.
This section will outline how to store groups in LDAP through Policy Director, naming
conventions while doing so, and how to map roles across tiers or Policy Director
namespace branches.

Policy Director Groups Stored in LDAP
Policy Director defines groups using a description within the console, and stores the
groups in LDAP. The distinguished name for the group is specified when the group is
created in the Policy Director Console. The DN should reflect the centrally located roles
container within LDAP. For example, one could create a container object within LDAP
such as “ou=Roles,ou=GCSS-AF,ou=USAF,ou=DoD,o=U.S. Government,c=us” This
space is reserved for Policy Director groups. Then any new roles would have a DN of
“cn=GroupName,ou=Roles,ou=GCSS-AF,ou=USAF,ou=DoD,o=U.S.
Government,c=US”. The groups should not be saved in the same LDAP container as
the users. I.e. the user DN should not contain “ou=Roles”. Groups should also not
spread throughout the LDAP server because of the time, which Policy Director Console
would require to retrieve all the groups.

IMPORTANT – The MA development team should strive to minimize the number of
groups it defines. In other words, set up as few groups as possible while still capturing
the MAs access control requirements. For example, if the MA does not require data
access to be restricted depending on what base the user is assigned to, then do NOT
define a separate group for each base’s users. Instead define groups at the MAJCOM,
region, or even USAF levels, which will reduce the number of groups required.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

267

Group Naming Convention
A few general rules of thumb should be applied when defining and naming groups.
Group names shall be coordinated with the GCSS-AF Enterprise Authority to avoid
conflicts. The case of the names should be consistent; using all uppercase is
recommended, because Policy Director is case-sensitive. It is recommended that the
group name be a combination of the domain, location, and role description, separated by
hyphens. However, any consistent scheme could be used. A hierarchical concatenation
of the name is recommended. This requires concluding that which is most general, most
specific, and everything between for a given MA or domain. If the domain were most
general, it would appear first. Were location to be the next appropriate level, it would
appear next. For example:

ILS-BASE1-ADMINS
ILS-BASE2-SUPPLY_CLE RK

In the example, the domain (ILS) is placed first, followed by the location, and finally the
role description itself.

Mapping Roles Across Trees in Policy Director
A mission application may manage different-tiered objects to be protected. For example,
web pages may be located under the WebSEAL tree, and methods to be protected may be
located in a custom tree or under the WebSphere tree. Administrators of a particular
portion of the Policy Director tree (Ex. WebSEAL) may also be selected to administer
corresponding portions of the other (Ex. method- level access checks under a custom
tree). To facilitate administration, it may be desirable to use the same roles in both
portions of the Policy Director tree.

The Integration Framework contains a segment called IFSPDSPolicyDirectorScripts.
The bin\IFSPDSAdmin directory of this segment contains scripts to set up example
Policy Director objects on both NT and Solaris. The objects are grouped logically by
object.

6.3.4 Setting Up User Data
Each user added via Policy Director’s Console is stored in LDAP in a similar fashion to
groups. Policy Director stores the user’s name, description, LDAP DN, and other data
about the user such as password age, login failures, and the user’s last login in LDAP.

Users are usually added though the PD Console. The console allows associating a
description with the user. The user data is stored in an LDAP directory. The user data
should be located in one place, determined by the user DN. The base portion of PD User
DNs should consist of “ou=Users,ou=GCSS-AF, ou=USAF, ou=DoD, o=U.S.
Government, c=US”. The format of the common name should be based on AF-defined
user naming standards.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

268

Making Sure the Necessary Data Resides in the Application
There may be cases where an application requires information that is not normally
provided for in PD, to complete its requirements for access control. Use of the IF-
provided data and methods can facilitate the design in such cases. For example, a Supply
application might need to be able to identify users who have access to Hazardous
Materials. “HazMat” is not a field normally maintained in an LDAP directory. One
option is to extend the LDAP schema to include a “HazMat” field that can be mapped to
a user identity. Then the MAs Servlet could receive the ID in the SessionInfoStruct, do
an LDAP lookup to find “HazMat” for that user, and pass the result to the MAs EJB or
CORBA components via the extra fields in the SessionInfoStruct. This way, the MA
only has to do this lookup once, rather than once for each method the user may invoke.
See Appendix A of this Developer’s Guide for details of the classes, methods, and
structures supplied by the IF that may assist in this sort of application need.

6.3.5 Access Control and Web Objects
The IF supports the capability for providing access control on Web objects. The IF
protects URLs, using the Tivoli SecureWay Policy Director product. All users access
Web Content through the Policy Director WebSEAL component of the Policy Director
product. It is necessary to implement the Key Steps in Providing for Access Control to
provide Access Control to Web Objects.

Key Steps in Providing for Access Control
Note that the steps described below are very similar to those in Section 6.3.1. The
intention is to focus in this section on actions within each step that are specific to web
objects (URLs, HTML pages, etc.), so that applications that only interface to the IF at the
Web level can concentrate on the specifics of their situation.

The basic steps an MA team needs to perform in this area are:

1. Determine what resources, individual or collectively, need to be protected.
2. Decide what job roles, or groups of users, will require what type(s) of access to

each resource (or group of resources). Derive Group data from this information.
3. Decide how to determine which MA users will be placed in each role or group

that is established in step 3. Derive User data and registration guidance from this
information.

4. For each resource listed in step 1, determine what level and type of protection is
required (relying heavily on the Group data derived in step 2). Derive ACL data
from this information. Also, decide where MA software needs explicit access
checks, based on the level of protection analysis.

5. Coordinate with the GCSS-AF Operation Authority to set up the ACL, Group and
User data in Policy Director.

6. Program and test the software based on the decisions in steps 2-4. Adjust the
ACL, Group and User data, if needed.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

269

7. Coordinate with the GCSS-AF Operation Authority and DISA, to migrate the
application, including its access control data, to the operational environment on
the IF.

Guidance on performing each of these steps for Web Objects is provided in the rest of
this section. (Note: Although they are presented here as discrete steps, in reality, the
process should be regarded as iterative; i.e. it will be valuable to revisit earlier steps as
more information is obtained.)

Step 1 - Determine Resources Requiring Protection

The first step is to determine what MA information and functionality may require
protection. This assessment needs to be performed in conjunction with the
owner(s) of each resource the MA shall protect. In this step, the objective is not
to define the kind or level of protection, only the objects or functions to which
protection need to be applied.

The output from this step will be a list of data objects, MA functions or
components that requires protection from unauthorized access.

This step is an iterative process that is performed during the MAs Requirements
Analysis, Architecture, Design, and Implementation phases of development.

Resources that may need to be assessed during this step include:

Web Objects, that is, anything addressable by a URL: Servlets, JSPs, static HTML
pages, CGI scripts, graphics, PDF files, and other documents

It is recommended that the developer identifies all URL addressable information
even identifying those that do not need access control. It may be sufficient to do
this at a directory level and not a file level. This is a necessary step because it is
desirable to structure the directory tree and the content contained therein such that
ACLs can be applied efficiently. For example, it would not be wise to put limited
access content in the same directory as publicly available content. If this is done,
the developer will have to place ACLs on each item in the directory and will not
be able to apply it at a directory level. The MA Developer should not carry this
out to the extreme. As the application evolves over the life cycle, additional
functionality and capabilities will be created as well as new roles identified for
this application. The guidance is simply that the MA Developer should consider
the security ramifications of the application layout from the inception of the
design including the directory structure.

The WebSphere Application Server Advanced Edition (WAS-AE) creates aliases
for application root directories that are accessible by a URL. The layout of the
application directories in WAS-AE also needs to be taken into account.

Step 2 - Derive Group Data

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

270

The next step is to define the Groups that will represent user roles. This activity
should be undertaken in light of the entire MA and not just from the Web Objects
point of view. Please refer to 6.3.1 Planning for Access Control for details on this
process.

Step 3 - Derive User Data

The output from this step should be a list of user attributes and business rules and
criteria that are needed in order to assign users to Groups. This activity should be
undertaken in light of the entire MA and not just from the Web Objects point of
view. Please refer to 6.3.1 Planning for Access Control for details on this process.

This step should be performed during the MAs Design phase of development.

Step 4 - Determine Level and Type of Protection

To reiterate the information in Section 6.3.1: Virtually all information requires
some kind of protection. However, some information is of such low criticality, or
is so generally available, that its damage or deletion will cause no practical loss.
Likewise, some information is of such high criticality or sensitivity that its
damage or deletion could be catastrophic. Therefore, an essential action an MA
team shall perform is to decide which of the resources under the MAs control fall
into which levels of criticality.

This is repeated because the MA, working with the Operations and Support
Organization and the Security Organization, needs to evaluate the criticality of the
MAs web objects (Servlet, JSP, HTML page, etc) in regard to the overall
application. If the application is providing explicit access control checks for the
backend methods invoked by the web objects, then it may be acceptable to use a
high level broad protection of the web objects. This eases administration and
allows the Operations and Support Organization and Security Organization to
focus on protecting the actual methods of the applications.

If however the web objects themselves contain data that is deemed critical or
sensitive, then care shall be used on placing more precise and stringent access
controls on the web object itself. As this increases the amount of overall critical
objects to protect, it increases the amount of administration. In this instance,
much more care should be taken in designing the layout of the web objects to ease
the security administration on those objects.

An MA Developer needs to coordinate with the Operations and Support
Organization and the Security Officer to:

♦ Identify what resources need to be protected

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

271

♦ The MA identifies the Servlets, JSPs, HTML pages, graphic pages, etc
and the subdirectory structure related to their application.

♦ The Ops and Support Organization identifies the web server(s) that the
MA will be hosted on and the parent directory for the MA. A junction,
in WebSEAL, refers to a set of identically configured and maintained
backend Web Servers that are logically grouped together under a
common access point. The junction name associated with this junction
is used in the URL to access the backend web server.

♦ The Operations and Support Organization will have to identify the
parent directory, and/or an alias to the parent directory, for the MA.
This is necessary, as the MA will most likely be sharing a web server
with other MAs.

♦ The MA should design its application directories with security in
mind. Grouping items with similar access control requirements under
the same directory branch is preferred over mixing items with various
requirements in the same directory branch. Policies and access control
requirements will change over time, but planning, up front, can ease
the long-term security administrative burden.

As indicated in Section 6.3.1 Planning for Access Control, the MA needs to
identify what resources need to be protected and who needs to access them. This
identification includes the initial access via the URL reference to the Servlets,
JSPs, html pages, graphic pages, and the rest of the URL addressable objects.

The namespace that Policy Director uses to identify URL objects is the WebSeal
namespace.

Table 34: Policy Director Object Space WebSEAL Branch

/ Root Policy Director Object Space Entry
/WebSeal Beginning of all WebSeal protected resources
/WebSeal/<Server Group Label> Each DECC installation will define at least one

WebSeal server. Each group of identically
configured WebSEAL servers will be identified by
a <WebSEAL Server> label. By default this is the
WebSEAL server name. This can be changed with
the padmin” server mo dify <server name > baseurl
<Server Group Label>” command.

/WebSeal/<Server Group Label>/<junction> A junction is the name that will be used in the URL
to reference a set of identically configured backend
Web Servers. It is important to remember that there
is one junction per web server set and not one per
application running off the web server.

/WebSeal/<Server Group
Label>/<junction>/<WebServer document roots and
subdirectories, etc>

This is the start of the document root directories on
the backend Web Servers. Policy Director
dynamically queries this content for display
purposes in its admin tool by essentially performing
a directory list request.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

272

See Figure 77: Example Policy Director Object Space WebSeal branch for an example of
the hierarchy.

/gcss-af
(junction)

/portal
(junction)

/ils
(junction)

/entr
(junction)

/gcss-af
(WebSEAL Server -- CONUS)

/gcss-af
(junction)

/portal
(junction)

/ils
(junction)

/entr
(junction)

/pacserver (e.g.)
(WebSEAL Server -- PACAF)

WebSEAL
(WebSEAL Server Root)

/
(PD Object Namespace Root)

Figure 77: Example Policy Director Object Space WebSeal branch

The /WebSeal branch is fixed. The WebSEAL server name is never seen by the end user.

Create a Junction -The Operations And Support Organization will create a junction
name is chosen to represent the content that the backend Web Server set that

6.4 Non-Repudiation
Non-repudiation encompasses services that ensure a user cannot deny an action taken by
him/her or on his/her behalf, within the system. This includes providing capabilities for
creating, verifying, and properly storing digital signatures.

Because digital signatures involve the use of pairs of signing keys (one private, one
public), its use is predicated on the use of a Public Key Infrastructure (PKI). See Section
6.8 for information about PKI in the context of the IF.

Non-repudiation facilities typically include:

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

273

• Using digital signatures for (user) identification; can be used on email or
individual documents.

• Providing a capability for software programs or processes to “sign” files or
messages they generate on behalf of a user.

• Signing software to ensure it has not been tampered with. The IF does not police
software signing. However, the GCSS-AF System Security Policy requires
software delivered to GCSS-AF to be signed; see that document for details of the
procedures that are required.

• Archiving signed items and the relevant certificates, to support later audits or
legal inquiries.

Note Future Capability: Non-repudiation archiving is not provided, and is not
currently planned due to lack of COTS capabilities and the immaturity of relevant
standards in this area, but may be provided at a later date.

6.4.1 User Digital Signatures
Note Future Capability: User- level digital signatures are anticipated to be
provided in a future release of the IF. This will be coordinated with the
integration of the IF with DoD PKI in the Air Force.

Any requirement for users to sign forms or documents should be documented and tied to
existing digital signature methods. Applications that have such requirements will need to
select a COTS digital signature product that meets their requirements, and work with the
GCSS-AF Enterprise Authority to integrate that product with the IF; or will need to write
digital signature modules as part of their development effort. For example, they can use
the digital signature services provided by the Java Cryptography Architecture (JCA)
services included with the Java Development Kit.

Note: Digital signatures are often required on user email. However, the IF does not
specify tools for the user’s desktop (beyond a web browser), so the IF does not address
email signature capability. The Air Force has initiatives that extend to email signatures,
and if an Application has a requirement in this area, the Application team should
coordinate with the appropriate AF group(s).

6.4.2 Application Digital Signatures

Note Future Capability: Application digital signatures are anticipated to be
provided in a future release of the IF. This will be coordinated with the
integration of the IF with DoD PKI in the Air Force.

As described in Section 5, Business Object Documents (BODs) are the basis for inter-
application communication in the IF.

A decis ion that should be made as BODs are being defined for an application is which
BODs, if any, will require digital signatures. Basically, a digital signature should be used

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

274

when it is important to be able to verify the source of a BOD at a later point for legal,
auditing, or financial accountability reasons. For example, a BOD that carries personnel
information may need to be signed to satisfy Privacy Act considerations. Digital
signatures should also be employed when it is important to ensure that the source of a
BOD cannot later deny originating the BOD; this will generally not be an issue except
where the BOD is tied to a human user as the (delegated) author. Digital signatures
should NOT be used where these specific needs do not exist, because digital signature
processing can be detrimental to the application’s performance.

Any need for components to sign BODs or documents should be documented and tied to
existing digital signature methods. Applications that have such requirements will need to
select a COTS digital signature product that meets their requirements, and work with the
GCSS-AF Enterprise Authority to integrate that product with the IF; or will need to write
digital signature modules as part of their development effort. For example, they can use
the digital signature services provided by the Java Cryptography Architecture (JCA)
services included with the Java Development Kit.

6.5 Confidentiality
Confidentiality is the security characteristic that ensures that unauthorized individuals
cannot view, modify, or delete data without appropriate authorization, and that proper
protection is applied to data and code during both storage and transmission. Note that
handling of authorization is covered in Section 6.3; this section will explain how the IF
applies data protection methods.

In the IF, as in most secure systems, encryption is the primary mechanism for data
protection. The IF expects infrastructure level protection to be applied to data files and
static storage, and it specifies settings to ensure that data and code is protected while in
use by application products; Section 6.5.1 describes this. The IF security architecture
specifies at least one encryption mechanism for every off-box communication path in the
architecture; see Section 6.5.2.

Because most of the encryption mechanisms specified in the IF are intrinsic to the
infrastructure (i.e., they are determined by configurations or settings, rather than by
software), developers seldom have to deal with encryption explicitly.

6.5.1 Protecting Static Data
For the purpose of this section, “static data” refers to the files used and created by the
developer for their application. The intent of this section is to ensure that developers have
the information necessary to develop software that does not compromise a secure
configuration.

The requirements levied upon the developer may be found in the following DISA
documents (in addition to the GCSS-AF System Security Policy):

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

275

• Defense Information Infrastructure (DII) Common Operating Environment (COE)

Integration and Runtime Specification, version 4.1, October 3 2000 [CM-38541]
• DII COE Windows NT Application and Kernel Developer’s security Guidance,

July 1999
• DII COE UNIX Kernel Developer’s Security Guidance, June 1999
• UNIX Security Technical Implementation Guide, version 3 release 1, October 29

1999
• Database Security Technical Implementation Guide, version 3, release 1, October

30 1999

The DII COE documents are available from the DISA web sites:

http://diicoe.disa.mil/coe/coeeng/SECURITY_PAGES/securitydocs.html
http://dod-ead.mont.disa.mil/cm/general.html

The Security Technical Implementation Guides (STIGs) are available, for .gov and .mil
sites, at http://iase.disa.mil/. Personnel such as DOD contractors who legitimately need
access to this information but do not have a .mil or .gov address should contact the Field
Security Operations Support Desk at DSN 570-9946, Commercial 717-267-9946, or e-
mail to fso_spt@ritchie.disa.mil.

At a minimum, the developer should examine the appropriate STIG manual(s) that
pertain to their platform (UNIX, NT, Database) as early as possible in the development
phase. This will allow the developer time to work around any design issues that the
STIGs may affect. For example, running a process with setuid set to root on UNIX is
prohibited. If the application currently contains an executable with the setuid set to root,
the developer shall either come up with another method of running the application or
request a waiver from DISA to allow it.

It is recommended that the developed application be installed and verified on systems
that have been locked down per the STIGs. This will provide the developer with the
assurance that their application performs as expected in a secure environment and will
also provide insight into problems that may occur during deployment. The actual STIG
installation instructions shall be provided by the Mission Application SPO (i.e. obtained
by the SPO from DISA) for the targeted DISA deployment sites (DECC-Ds). Note that
the installation instructions may vary from site to site so it is recommended that all target
sites be contacted, if possible.

Note: Even if the MA will be deploying servers at sites outside DISAs span of control
(e.g. AF Bases), it is recommended that the MA still use the STIGs for locking down its
servers. This will ensure a valid level of protection, and will also ensure consistency with
other elements of the AF that use the IF at DISA facilities, thus lessening the chance of
inter-operability problems (due to inconsistent port closures, for example).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

276

In addition to the truly static data protection methods that are described above, the IF also
provides for secure settings to be used in its application-support components, e.g.
Component Broker (WebSphere EE). For example, the containers that EJBs are
deployed in are configured to be secure in operation. These settings are described in the
appropriate places in the IF Installation Guides (and in Section 5.2 and 5.3 of this
Developer’s Guide), as they are expected to be applied when the IF is deployed.

Developers who set up test environments (including development tools) should replicate
these settings, so that development and testing is done in the same environment that the
applications will run in. If an MA team discovers that one of these settings interferes
with the operation of its application, it should notify the GCSS-AF Integrator, and work
with the Integrator to resolve the issue. The MA team should NOT simply change such
settings unilaterally!

6.5.2 Protecting Data Transmissions

Most data transmissions within GCSS-AF are encrypted via installation and configuration
procedures. The diagram below (a copy of diagram 1 in Section 6.1) shows the various
paths.

Browser Web Proxy
Server

1

DNS

2a

Cisco
Local Director

2b
WebSEAL

3

4 5

Authzn_replica.db8

WWW Server

9

AE
10

AE ACLs11

13 CB

EJB
CORBA

Component

LDAP
Directory

6, 7

Audit Log

6

Oracle

MQ

Legacy

16

17

18Authorization
Server

12

Authzn_replica.db

Audit Log
15a

WAN

DECC-D

GCSS-AF Enclave

IFCBSecurityInfo

1414

15

19

Figure 78: GCSS-AF Enclave Model I

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

277

See Table 35: Confidentiality Network Traffic Matrix below for a description of each
transmission path between elements of the IF, and its encryption mechanism. Each path
number in the diagram has a corresponding entry in Table 1. An exception that would
fall under the responsibility of the Operations and Support team is the encryption
between the client on the WAS AE platform and the WAS EE Component Broker
application.

IMPORTANT: The Air Force has directed that all paths shall have an encryption
mechanism available as part of the IF. However, for paths between servers that are
located in the same DECC-D, the Air Force’s initial direction is that encryption shall not
be turned on, due to the performance impact and the minimal risk to traffic that is totally
enclosed in the DECC-Ds secure facility. Any traffic that may enter or leave the DECC-
D (especially traffic to/from a user’s browser, and MQSeries traffic that is intended to
handle inter-application communications) shall have encryption applied.

If this direction results in an MA requirement not being met, the MA development team
needs to coordinate with the GCSS-AF Enterprise Authority to determine if the MA can
use the existing IF accreditation, or if it needs a separate set of servers with encryption
turned on inside the DECC-D. In addition, if the MA plans to deploy servers outside the
DECC-Ds, the MA team will need to assess with Site Security Officer the risks that will
result, and apply appropriate encryption to resolve those risks.

Table 1 indicates the approach to providing confidentiality for that path. Where the
developer will need to take some action, the text below the table will describe what is
required, in further detail.

Table 35: Confidentiality Network Traffic Matrix

Path Encryption
Browser – WebSEAL HTTPS

WebSEAL server certificate (support for Netscape CA)
Supports use of client certificates if available.

WebSEAL – Web Server HTTPS
WebSEAL server certificate
Web Server server certificate

Web Server -- WAS AE Servlet Engine No native encryption
The OSE Redirector mechanism does not support
encryption

WebSEAL – IBM SecureWay Directory LDAPS
WebSEAL server certificate
LDAP server certificate

Policy Director Servers -- Policy Director
Servers
(includes WebSEAL – Security
Management Server and Authorization
Servers – Security Management Server)

DCE over SSL or DCE over GSS
Policy Director Server Certificates

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

278

Path Encryption
Policy Director Servers -- Policy Director
Servers
(includes WebSEAL – Security
Management Server and Authorization
Servers – Security Management Server)

SSL over TCP
Policy Director Server Certificates

Some communication between servers is socket based and
not DCE based.

WAS AE Servlet Engine – IBM
SecureWay Directory

LDAP (unencrypted)
SPR written – deficiency in product for support of LDAPS

WAS AE Servlet Engine – Authorization
Servers

DCE over SSL or DCE over GSS for Policy Database
Updates
SSL over TCP for access control checks.
Both use Policy Director Server Certificates

WAS AE Servlet Engine – UDB (a.k.a.
IBMs DB2)

No native encryption
WAS AE configuration/metadata/ACLs are required to be
in UDB.

WAS AE Servlet Engine – WAS EE
Component Broker

HTTPS for Authentication Process
WAS AE server certificate
WAS EE server certificate
GIIOP for Other Traffic

WAS EE Component Broker –
Authorization Servers

DCE over SSL or DCE over GSS for Policy Database
Updates
SSL over TCP for access control checks.
Both use Policy Director Server Certificates

WAS EE Component Broker – DCE Cell
Directory Service

DCE over SSL or DCE over GSS
Policy Director Server Certificates

WAS EE Component Broker – DCE
Oracle

SQL*Net via Oracle ANO
Note: Oracle ANO doesn’t use certificates for encryption.
It uses an alternate encryption mechanism

WAS EE Component Broker – UDB
(a.k.a. IBMs DB2)

No native encryption; see text below this table.
Component Broker configuration/metadata is required to be
in UDB. The GCSS-AF IF recommends that application
data be stored in an Oracle server.

Policy Director Servers – DCE Cell
Directory Service (CDS)

DCE over SSL or DCE over GSS
Policy Director Server Certificates

WAS EE Component Broker – MQSeries
MQM

N/A. Traffic isolated to same host.

MQSeries MQM – MQSeries MQM DISA current practice is to establish VPNs between
MQSeries MQMs that communicate across a WAN. The
traffic is left in the clear within a LAN.

For all entries that mention “certificates”, the MA team will need to obtain and install
certificates in its development test machines. The procedure fo r doing this is described in
the IF Installation Guides. For deployment, the machine certificates will be obtained and
installed by DISA in the DECC-D.

All other authentication/encryption mechanisms mentioned are enabled by applying the
appropriate configuration settings as described in the IF Installation Guides, except for
these paths:

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

279

Note Future Capabilities:
WAS AE Servlet Engine – IBM SecureWay Directory
As the table indicates, this path should have LDAPS applied. However, the current levels
of these two products do not inter-operate via LDAPS. The IF team has submitted a
Software Problem Report (SPR) to Tivoli, and Tivoli is working to resolve the issue.

WAS AE Servlet Engine – UDB (a.k.a. IBMs DB2), and WAS EE Component
Broker – UDB (a.k.a. IBMs DB2)
(The AE-UDB path is not specifically shown on the diagram due to space limitations, but
the mechanism would be similar to the one for CB-UDB, which is path 16 in the
diagram.) There is no native encryption method that is inter-operable between these
products. The IF team has determined that there are two basic methods that can
potentially be used:

1. NetSeal over GSS Tunnel – a combination of NetSeat client on the AE or CB box,
with NetSeal on the DB server, configured to use a GSS (or SSL) secure tunnel.
NetSeal receives and decrypts the SQL request and passes it to the database
engine. (This requires closing the TCP port (6720) on the DB server box, to
ensure this path is the only one through which requests can reach the database.)
Note that NetSeal supports a wider range of encryption algorithms, in particular
Triple DES, over SSL than it does over GSS.

2. Third-party software – apply third-party software, such as that from HiT

Software, that is specifically designed to protect DB2 traffic. This will also
involve adding a client to the AE or CB box, and a server module to the DB box,
and establishing a secure (SSL) tunnel via appropriate configuration.

Because DB2 is not the recommended application database under the IF, only limited
testing of these solutions has been done. However, if an MA requires encryption for
the use of DB2, we recommend setting up NetSeal using SSL – this uses existing IF
components and supports stronger encryption algorithms than the GSS tunnel. (Note,
though, that this recommendation is limited to NT. We expect to re-visit this issue in
the future.)

MQSeries MQM – MQSeries MQM
The intent of the IF architecture is for Message-Oriented Middleware (MOM),
specifically the MQSeries product, to be used for all inter-site communications. (See
Section 5.) DISA has an existing Virtual Private Network (VPN) mechanism that
encrypts and tunnels all MQSeries traffic to/from a DECC-D.

Refer to Section 6.2.2.2 MQSeries Message Queue Manager Channel Exits for the details
regarding the authent ication mechanism between two MQSeries MQM instances

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

280

6.6 Integrity
Integrity services are those that ensure system elements and data cannot be compromised
or modified by illicit actions. The majority of the services and measures, such as
boundary protection, required for Integrity is provided by the processing centers and base
networks. System oversight and administration services and measures are provided by
ESM package and by USAF and DISA operations and support. The IF Integrity
capability provides only that information needed to tie into these external elements and
with the IF supported security product base, the IBM Policy Director. In addition, the IF
requires the proper application of DISA STIGs to the host servers and software. The sub-
sections that follow provide a basic description of the integrity services the IF employs or
ties to.

6.6.1 The GCSS-AF Enclave
The GCSS-AF security architecture calls for all GCSS-AF servers and supporting
equipment (routers, hubs, etc.) to be guarded in a physically and logically distinct sub-
net, or “enclave” at each server site. (Currently, all server sites are DISA DECC-Ds.)
This allows the closest possible security policy to be applied at both the site boundary
and the sub-net boundary. The policy shall, of course, provide for all communication
paths and protocols required for IF traffic, but can restrict all other paths and protocols
without interfering with the operation of other sub-nets that may be in operation at the
same site.

The network setup for GCSS-AF is notionally depicted in Figure 79: GCSS-AF Enclave.
(Other network configurations can validly be examined for fielding of the GCSS-AF
Integration Framework. This one roughly corresponds to the current fielded
configuration, however, except that there is currently only one DECC-D fielding the IF,
DECC-D Montgomery.) Figure 79: GCSS-AF Enclave also provides an example of
relevant portions of the DNS configuration (all URLs and IP addresses shown are
examples, only).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

281

Firewall

Cisco LocalDirector
(Primary)

Policy Director WebSEAL

Cisco LocalDirector
(FailOver)

FailOver Cable

Policy Director WebSEAL

Policy Director WebSEAL

GCSS-AF Computer

GCSS-AF Computer

GCSS-AF Enclave

DNS

DNS
DNS Records

www.gcss-af.sand.disa.mil IN CNAME ldv99.gcss-af.sand.disa.mil
ldv99.gcss-af.sand.disa.mil IN A 192.168.2.99

192.168.2.99

192.168.2.99

WAN
(NIPRNET)

Client (Browser) WWW Proxy Server

Firewall

Cisco LocalDirector
(Primary)

Policy Director WebSEAL

Client (Browser)

Cisco LocalDirector
(FailOver)

FailOver Cable

Policy Director WebSEAL

Policy Director WebSEAL

GCSS-AF Computer

GCSS-AF Computer

GCSS-AF Enclave

An Air Force Base

DNS

DNS
DNS Records

www.gcss-af.mont.disa.mil IN CNAME ldv99.gcss-af.mont.disa.mil
ldv99.gcss-af.mont.disa.mil IN A 192.168.1.99

Base Selects Preferred RSA
For Example:

URL: https://www.gcss-af.mont.disa.mil
or

URL: https://www.gcss-af.sand.disa.mil

192.168.1.99

192.168.1.99

RSA1 (E.g. DECC Detachment Montgomery)

RSA2 (E.g. DECC Detachment San Diego)

Figure 79: GCSS-AF Enclave Model II

Note that in the diagram, “Firewall” is used to depict the full perimeter network setup,
including routers, hubs and switches, and intrusion detection tools, as well as the actual
firewall itself. DISA currently uses PIX firewalls that are capable of supporting high-
speed network lines, multiple security policies on separate sub-nets, etc. This boundary
or perimeter, is set up in accordance with DISA standards that provide a level of
protection similar to that specified by CITS BIP.

The DNS, Cisco Local Directors, and Policy Director WebSEALs are the IFs piece of the
network infrastructure. They collectively provide for name-based lookups, re-direction
and session maintenance to back-end servers, and web proxying. WebSEAL is also the
point at which user authentication is performed and initial access checks to IF resources
are done (see Sections 6.2 and 6.3). “GCSS-AF Servers” include both application and
security servers; their integrity is assured by a combination of the perimeter and IF
infrastructure, and by their own on-box configuration.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

282

MA developers do not need to be directly concerned about details of this setup unless
they need to add boxes to the enclave. The basic cases for this are as follows:

1. Add a server with non-IF COTS products, especially if the products provide
function already provided by an IF product or component, or if the box uses a
different operating system platform than the IF servers. Deployment of this
server will have to be coordinated with the GCSS-AF Enterprise Authority, and
with DISA (especially see Section 6.6.3 below, for firewall issues that need to be
considered). Deployment of this server will likely require a separate Certification
and Accreditation activity, which can be time-consuming and expensive.

Depending on the combination of COTS products on the server, it may represent
an additional level of risk to the enclave as a whole (e.g. if it requires opening a
wide range of ports that are otherwise un-needed in the enclave, or if it requires a
non-secure protocol to be used). This option is the refore NOT recommended.

2. Add a server with IF COTS products (e.g. WebSphere, MQSeries) and MA

software or data that relies on those products. Deployment of this server should
be easier to coordinate through the GCSS-AF Enterprise Authority, and should
not require a separate C&A activity (i.e. the existing accreditation should be able
to be updated, with less effort than obtaining a new one).

3. Add MA software to an existing IF server. The easiest case to coordinate through

the GCSS-AF Enterprise Authority (at least as far as technical issues are
concerned).

6.6.1.1 Server Integrity
All IF servers deployed to a DECC-D will have the appropriate Security Technical
Implementation Guide (STIG) lockdowns applied. These are instructions designed to
apply the maximum level of protection to resources on that individual box, including
port, folder, file, and registry protections. DISA also applies certain standard anti-
tampering tools to each server at the same time.

DISA is responsible for applying the STIGs to servers as they are deployed. However,
developers should be aware of what the STIGs require, as they can affect both
performance and function of the server, especially of some COTS products. See Section
6.5.1 Protecting Static Data.

6.6.2 The DMZ
The GCSS-AF security architecture provides for a “demilitarized zone” or DMZ to be
established at a server location, by deploying a second, internal, firewall (at the point
denoted by the gap in the lines inside the GCSS-AF enclave in the diagram.) This serves
to provide a second layer of protection to the servers sitting behind the inner firewall, by

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

283

locking down the inner firewall more tightly to open only the specific ports and IP
addresses needed to allow boxes in the DMZ to communicate with boxes in the enclave.
The enclave would then receive no traffic except that which originates in the DMZ. (The
exception would be the servers that support MQSeries, but as explained in Section 6.5.2,
these servers have VPNs applied to protect their traffic.)

The external firewall allows end users from virtually anywhere to access the WebSEAL
hosts using the HTTPS encrypted protocol. All other protocols to the WebSEAL hosts
would be blocked. The external firewall would also block any attempt to access any of
the other GCSS-AF hosts using any protocol.

The existence of the internal firewall provides additional protection by only allowing the
WebSEAL hosts in the Network DMZ:

1. To only access the GCSS-AF web servers using HTTPS

2. To only access the LDAP directory (Authentication hosts, typically

configured on the Authorization servers) using the LDAPS protocol

3. To only access the Security Management Server (Security Master Server)

using DCE

The benefit of this is that if the WebSEAL servers were to be compromised, the attacker
would only have limited holes to export on the GCSS-AF servers on the internal network.

The internal firewall can be removed, and in fact has been removed from the initial
fielding configuration. This is because firewalls can significantly affect performance. (It
was determined, in consultation with DISA and the GCSS-IF SPO, that the PIX firewall
supported by DISA for the perimeter provides sufficient protection that an internal
firewall and DMZ should not be required. In particular, the PIX firewall can support
applying separate security policies to separate sub-nets behind it, thus allowing all GCSS-
AF servers to be protected as an enclave, as described in Section 6.6.1.)

6.6.3 Firewall Considerations
Computer network perimeter security, using a mixture of firewalls and routers, is
mandated at every USAF base and DISA installation throughout the world. To avoid
problems with the deployment of their applications, Application Developers working on
tasks that run on the GCSS-AF Integration Framework should have a basic understanding
of network perimeter security. They should also have an understanding of the procedures
to use to determine if they will have any additional security requirements for deployment
and what to do if there are.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

284

6.6.3.1 Roles in Perimeter Security and Security Policy
Routers provide the capability to help secure the perimeter of a protected network. They
are used to direct and control much of the data flowing across computer networks. They
can be configured to control access, resist attacks, shield other network components, and
even protect the integrity and confidentiality of network traffic. Firewalls help secure the
protected network by filtering network traffic and dropping unwanted packets. They use
filtering rules configured by the network administrator to restrict incoming packets to
specific domains or specific networks. They can also filter traffic based on the destination
address or port of the packet, thus limiting packets to systems in the protected enclave to
ports recognized and accepted by the network security administrator. Firewalls have
become a single point of network access where traffic can be analyzed and controlled
according to parameters such as application, address, and user, for both incoming traffic
from remote users and outgoing traffic to the Internet.

A router can also be used as part of defense-in-depth approach as shown in the diagram
below. It acts as the first line of defense and is known as a screening router. It contains a
static route that passes all connections intended for the protected network to the firewall.
The firewall provides additional access control over the content of the connections.

Figure 80: Typical One-router, One-firewall Internet Connection Configuration

Another approach is to position one router at the connection between the local premises
and the Internet, and then another router or firewall between the existing firewall and the
protected network. This configuration offers two points at which policy can be enforced.
It also offers an intermediate area, often called the de-militarized zone (DMZ) between
the two routers. The DMZ is often used for servers that shall be accessible from the
Internet or other external network.

6.6.3.2 Obtain Application/COTS Product Port Numbers
Application Developers shall be aware of any network ports their application uses as well
as any ports used by the COTS products their application requires, if any. The port(s)
used by their application will be known to them, but those used by the COTS products
shall be obtained from either the vendor’s documentation or from their technical support
help desk. The only way to truly validate the ports being used by the application is to
perform a port analysis on the network while the test procedures are being run. The port
analysis for IF 2.1 is available in the IF 2.1 Software Installation Procedures.

Internet
Router

Protected
Network

Firewall

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

285

6.6.3.3 Register Port Numbers
Once the application’s ports numbers are all identified, they shall be registered with the
DoD at:

http://dod-ead.mont.disa.mil/qry/internet/Register/Port.htm

The following text is from this site:

“Register Socket and ID Information

 NOTE: Per I&RTS policy, ALL DoD programs (i.e., DII COE, DoDIIS,
AGCCS, AFGCCS, GCCS, GCCS-T, and GCSS) shall register segment-related
information as early as possible in the development cycle.

All DII COE TCP Numbers are required to be registered/verified if:

1. If the developer is using a well know port (Range 0 - 1023 Well Known Ports)
verify the port number and name and be sure to use the port correctly. The
developer SHALL NOT use a "well known port 0 -1023" or its name, for a Non-
standard use.

2. If the developer is using a port in the Range 1024 - 49151 (Registered Ports)

3. If the developer is using a port in the Range 49152 - 65535 (Dynamic and/or
Private Ports) an email shall be sent to cm@ncr.disa.mil with the port Name,
Number and Range.

If the segment requires associated TCP/UDP sockets, the developer shall register
the TCP/UDP Sockets. Socket registration is not required for all segments. The
developer may also view as list of sockets that have already been assigned.”

6.6.3.4 Open Ports at Installation Sites
After registering the required ports with the DoD, the developer shall contact the
appropriate personnel at DISA in order to obtain permission to open the required port(s)
in the network perimeter security at the required installation sites. It is recommended that
the developer work with their program contracts office to formalize this requirement with
their customer. If the application requires access at additional DISA sites, these sites shall
also be notified of the port requirements.

6.6.3.5 Validate Port Usage
The only way to truly validate the ports being used by the application is to perform a port
analysis on the network while the test procedures are being run. The port analysis for IF

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

286

2.1 is available in the IF 2.1 Software Installation Procedures. If a firewall is available at
the development site, it is recommended that the application be tested with only the
required ports being allowed through. To ensure a successful deployment, it is also
recommended that the port analysis be performed as early in the test phase as possible to
allow for the customer to be formally notified and for the appropriate DISA and DoD
arrangements to be made.

The Integration Framework currently requires access through the network perimeter
security for the following ports:

HTTPS 443
LDAPS 636
MQSeries 1414 and 1415
DCE 49152(A currently unspecified number of

dynamic ports above)

6.6.4 Multi-Level Security
Note Future Capability: Multi- level security (MLS) refers to a system
requirement that the system be capable of securely interchanging data between
security levels (e.g. between Secret and Unclassified areas of a network).
Achieving multi- level security requires applying specific tools and techniques,
and would result in a number of changes to the IF security architecture.
Currently, the IF does not have a requirement for MLS, and therefore does not yet
support MLS. It is possible that a future release of the IF will provide MLS
capabilities. In the meantime, if an MA has MLS requirements, it will need to
resolve those requirements itself. The simplest approach to this that still could
gain from the IF, would be to deploy separate IF-based enclaves for Secret and
Unclassified operation, with a MA-selected “Guard” product to govern traffic
between them.

6.7 Audit and Alarms
This category encompasses services that record information about activities taken inside
the system, whether by human users or software components, and the storage and
analysis of those records. This includes creation of audit records, storage of audit
records, creation of audit reports, generation of dynamic on- line alarms, and analysis of
events and records (whether at runtime or post-mortem). It also provides services to
define and administer audit policies, as well as the technical features needed to
implement the policies. The current IF audit provisions are limited to the facilities
provided by the supported security product, IBM Policy Director and IF Log Services to
record system actions.

Note Future Capability: The current IF does not provide audit reduction or
alarm posting. Alarm and alert posting is to be provided at the DECC-D

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

287

processing centers using the Tivoli Management System capabilities employed by
DISA. Processing centers that do not utilize this Tivoli capability should plan on
implementing the same capability as DISA at a DECC-D. A future IF release
should subsume Tivoli under the Enterprise Systems Management capability.
Audit reduction and reporting capabilities are anticipated to be provided in a
future IF release.

This document defines the approach to raising and handling of Security alerts and
alarms for GCSS-AF. It is not intended to define or limit the approach to Application
defined alerts or alarms. (Some similarity is to be expected, however, because of the
common use of Tivoli products.)

For developers of applications that consist of static HTML links:
• If the application does not require access checks (other than against its main

URL), OR if the developer is using the IFs access check methods as described in
Section 6.3, then extra security audit/alert checks do not need to be added
(UNLESS the developer has special auditing requirements that go beyond those
described in the GCSS-AF System Security Policy (i.e. standard C2-level auditing).
In this case, they will not need to take any actions (log files are generated by the IF
COTS tools), but should read this section for background.

• If the application does its own access checks, the developer is responsible for
logging and/or raising alerts for events surrounding those access checks. They
may use the log4j tool or their own, to perform the logging actions. The developer
should read this section for background and coordinate with the GCSS-AF Enterprise
Authority to determine log contents (severity levels, etc.) as discussed briefly below.

6.7.1 Logging Framework Security Events

6.7.1.1 Background
An integrated Enterprise System Management tool with mechanisms for handling
security auditing and alarms is not currently provided by the IF. Therefore, the IF
current release, by agreement with the AF, will employ an interim approach for
security audits and alarms, intended to minimize expenditures for code and
integration that will be superseded when this capability becomes available. This
section describes this interim approach.

6.7.1.2 Executive Summary of the Approach
Security auditing will be based on the log files generated by Policy Director. The
WebSeal and Authorization Server components of Policy Director are the primary
originators of log files for security purposes. Currently, there are no modifications made
to the native COTS log file messages or formats. Mission Applications (MAs) can also

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

288

write to log files (using the IF Logging Service and the log4j open source tool) as they
detect conditions that may require attention; MA engineers can determine the message
content, so long as the messages do not exceed 256 ASCII characters.

Each message written to a log file will be characterized by a severity level. We use the
levels DISA employs; FATAL, CRITICAL, MINOR, WARNING, and HARMLESS,
as our default levels. Where a COTS product produces messages that do not fit these
levels, we will map the COTS messages to these levels (see below). MAs are expected to
tailor their error messages to these levels as part of their engineering effort.

On the Tivoli side, we will ultimately use Log File Adapters (LFAs) to convert the log
file entries into input to the Tivoli Enterprise Console (TEC) by way of Tivoli agents.
The TEC will display the actual alert or alarm. Log File Adapters are tailored to the
format of each type of log file, and can perform filtering of messages from that file. Log
File Adapters are not expected to perform audit reduction or correlation of messages from
multiple log files. Log File Adapters are rule-driven. LMSI-O and the AF will develop
the rules for handling IF-COTS-generated log messages, which are to be embedded in the
LFAs. The development and delivery of LFAs has been postponed to a later release of
the IF.

Rules for handling MA-generated log messages are the responsibility of each MA
engineering team. The rules will determine what messages the LFA should pass on to
Tivoli, and what parameters (e.g. severity) should be associated with them.

Assumptions :

1. Alerts and alarms will be displayed on the Tivoli ESM console (TEC). The Tivoli
ESM product(s) are being used “as is” and treated as a black box for purposes of
IF design. Tivoli Management Environment (TME) supports assigning actions to
messages; these can range from simply displaying the message on the Tivoli
console, to generating audible alarms, email, executing a recovery procedure, etc.

2. Mission Applications (MAs) are expected to use the log4j open source package to

generate log file entries as needed. Each MA engineering team will need to
determine, in conjunction with LMSI-O and the AF, what errors or conditions to
log, and what severity or priority to assign to each one.

3. Legacy systems connected to the IF will be expected to use a wrapper or interface

component (IC) that is GCSS-AF compliant. The wrapper or IC can generate log
files like MAs do, that can result in audit records (or ultimately, alarms) being
raised through the IF as described in this document, or the Legacy system can
handle audit requirements through its normal mechanism(s) outside of the IF.

4. Due to resource constraints, the IF will not attempt to use non-ASCII text logs as

the source for alert/alarm generation. This will preclude the use of DCE audit
trail files, in particular, as these are in binary format.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

289

5. DISA will administer Tivoli ESM, with guidance from USAF and LMSI-O

regarding GCSS-AF needs.

6. DISA will be responsible for correlating messages to isolate errors, perform audit
reduction, etc., at least for now. As indicated above, Log File Adapters are not
expected to do this, so it will be primarily a manual process.

7. The primary COTS-generated log files are expected to be those from Policy

Director’s WebSeal and Authorization Server components. Initial analysis
indicates that while WebSphere AE and EE can generate log files, their content is
less useful for security purposes and less readily amenable to writing rules for
Log File Adapters. In addition, it was agreed that MQSeries logging would be
postponed to a later IF release, to allow the use of the upcoming Policy Director
for Messaging component. Therefore, the later IF integration will address log
files generated by these products; this effort is expected to track to IBMs own
integration of Policy Director, Tivoli, and WebSphere products.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

290

6.7.1.3 Generating and Reading Log Files

Browser Web Proxy
Server

DNS

Cisco
Local Director WebSEAL

Authzn_replica.db2

WWW Server AE

AE ACLs

4

5

CB

EJB

CORBA
Component

LDAP
Directory

Audit Log

1

Oracle

MQ

Legacy
Authorization

Server

Auth Proxy
Svc

3

Authzn_replica.db

Audit Log
3,5

Tivoli ESM Log File Adapter

PD Management
Server

Audit Log

Log File Adapter
Log File Adapter

Servlet

TEC

Audit Log

Log File Adapter

6

7

7
7

7

8

Figure 81: Model of Log File Generation

The main steps involved in generating and using log files shown in this diagram are
explained below:

1. When a user initially requests a URL associated with GCSS-AF, they are
asked to log in, and WebSeal performs an authentication. For IF 2.1, this
involves a standard ID+password authentication. The success or failure of
this authentication process is logged.

2. After a successful authentication, WebSeal checks the users authority to

access the original URL request using the user’s credential against the
authorization policy database.

3. If the Audit permission on the Access Control List (ACL) for this object was

turned on, then the success or failure of the access check is logged on the
WebSeal server. For IF 2.1, the Audit permission will be turned on in the
ACL for all URLs that is part of the GCSS-AF menu hierarchy.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

291

4. If the user passes the authorization check, WebSeal forwards the user’s

original URL request to the Servlet. This forwarded request will include the
user’s credential information in the HTTP header.

5. When the forwarded request reaches it, the Servlet for the function requested

by the user extracts the credential information supplied by WebSeal in the
HTTP header from the HTTP_IV_CREDS parameter. The Servlet checks
the permissions of the credential to perform a specific action by performing an
authorization check to a Policy Director (PD) Authorization Server. First it
checks whether the user can invoke the Servlet itself, and then it checks
against any specific methods that the Servlet invokes that require separate
authorization decisions.

6. The PD Authorization Server checks whether the credential-holder is allowed

to perform the requested action (method) on the object attempting to be
accessed, and sends a decision back to the Servlet. Additionally, the
Authorization Server will log the access checks success or failure to the audit
log file.

7. If the user has access to invoke the Servlet and the specific object and method,

then the Servlet programmatically logs in (authenticates) to the WebSphere
Application Server Enterprise Edition (WAS-EE), a.k.a. Component Broker
(CB), via a Servlet Login Helper. The Servlet communicates to Component
Broker over SSL. Component Broker takes the userID and password supplied
by the Servlet Login Helper and logs in to Policy Director’s DCE Cell. If the
user does not successfully authenticate, the Servlet can send a page to the user
indicating a system error and to retry their request. If the Servlet Login
Helper successfully authenticates to PD (DCE), then the Servlet invokes the
specific EJB/CORBA object. In either case, the success or failure of the
authentication is logged. The Servlet passes the credential supplied in the BA
Header by WebSeal as a parameter to the methods invoked in the object.

8. The EJB/CORBA object checks the permissions of the credential to access the

EJB/CORBA object and the specific method by performing an authorization
check to a Policy Director (PD) Authorization Server. First the EJB/CORBA
object checks whether the user can invoke the EJB/CORBA object itself, and
then it checks against any specific methods that the EJB/CORBA object
invokes that require separate authorization decisions.

9. The PD Authorization Server checks the credential and the action requested

against the Access Control List (ACL) of the object attempting to be accessed
and the PD Authorization Server sends a decision back to the requesting
EJB/CORBA object. The Authorization Server logs the result of this
authorization check.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

292

10. If the user is not authorized, the EJB/CORBA object should return an error

code to the Servlet indicating that the user was not authorized to perform the
requested function. (The details of handling this error are an MA
programming decision. The Servle t can return an application specific error
message or a generic page that would be created for unauthorized access.)

11. If the user is authorized, the EJB/CORBA object performs the action. If

errors are encountered in the course of performing the action, the
EJB/CORBA object can log them. The error log entry’s content and severity
is dependent on the engineering of the Mission Application of which the
EJB/CORBA component is a part.

12. Note Future Capability: The Log File Adapter detects a change in the log

file(s) it is monitoring. The adapter pulls the log file contents and applies its
rules to the contents to determine what (if any) messages need to be passed to
Tivoli ESM for action.

13. Tivoli ESM receives the message(s) from the Log File Adapter. It applies its

configuration settings to them, to perform whatever action(s) are associated
with the message(s) received. If the settings indicate that an alert or alarm is
to be raised, Tivoli ESM passes the alert/alarm to the TEC for display.

Note that the primary sources for auditing are the log files generated by elements of
Policy Director. The main source of information about these log files that is publicly
available is the Policy Director Administration Guide (especially Chapter 12; this section
includes material from that chapter, tailored to the GCSS-AF IF).

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

293

6.7.1.3.1 IF Test Components (EJB and CORBA Components)
These components are supplied as examples of how Mission Applications may be
engineered to supply error information. They are not intended as definitive sources of
error information. It is expected that each MA engineering team will work with LMSI-O
and DISA to determine the appropriate types of errors to be logged by that MA, and how
they are to be categorized, including whether they will result in alerts or alarms.

Where handling of errors is not constrained by specific MA requirements, it is expected
that they will be handled according to IF-supplied design patterns (see the GCSS-AF
Rose Model).

6.7.1.4 Prioritizing Log Entries

As indicated above, DISAs prioritization scheme will be used for the IF. This scheme is
explained in this table:

Table 36: Explanation of DISA Prioritization Scheme

T/EC
Event
Severity

Significance Event
Seen By

FATAL

A resource has failed and is currently not operational.
Administrators should respond immediately and
continue working until the problem is resolved. These
events will be forward to other sensory grid for other
locations, such as Neurastar.

Help Desk
SA\DBA

CRITICAL A resource is near failure. SA\DBA should respond
immediately to ensure no degradation of service soon.

Help Desk
SA\DBA

MINOR
A resource is in highly cautious condition. SA\DBA
should respond and closely monitor to ensure no
degradation of service.

SA\DBA

WARNING A resource is in cautious condition. SA\DBA should
closely monitor or proactively respond to the problem.

SA\DBA

HARMLESS A resource has returned to its normal state. SA\DBA

The following table shows an initial recommendation for prioritizing events based on the
IF use cases. Note that not all of these events can be captured directly from the Policy
Director audit trail files or log files, and thus may require manual correlation. It is
expected that later releases will support more automated recognition and prioritization of
events.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

294

Table 37: Recommendation of Events for IF Use Cases

TRIGGER EVENT SUB-EVENT RECOM
MEND

SEVTY.

RECOMMEND
ALERT GEN'D?

RECOMMEND DATA
LOGGED

RECOMMEND DATA
ALERTED

Description

Success Harmless
(Warning
if is for a
privileged
user
account,
e.g.
“root”)

No Client Date/Time
Server Date/Time
Logger Date/Time
Unique Subj. ID
Type of Event
Success/Fail
Origin of Request &
Destination of Request (IPs)
Name of Program or File
Introduced
(<STD>)

 2.5.1 Logon Normal Path

Successive Failures Minor
(Critical if
it is for a
privileged
user
account,
e.g.
“root”)

Yes – Could be a
hack attempt.

" + Number of tries
Number of tries from each
specific Workstation, total
number of retries (May be a
job for reduction tools)
(<Retry Attempts>)

<STD>
<Retry Attempts>

Bad Record MAC – A
record is receive with an
incorrect MAC

Critical Yes – Could be an
attempt at cracking
the SSL Session.

<STD>
<Retry Attempts>
Certificate Information:
Client dn, Server dn,
algorithms(encryption,
compression, key exchange)
(<Certificate Information>)

<STD>
<Retry Attempts>
<Certificate Information>

2.5.2 Logon Problem w.
Establishing SSL

Decompression Failure –
The decompression
function received improper
input.

Warning

Most SSL
implementations do
not use compression

<STD>
<Retry Attempts>
<Certificate Information>

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

295

Handshake Failure – The
sender was unable to
negotiate an acceptable set
of security parameters
given the options available.

Critical Note: a hacker could
be trying all of the
servers to see which
one’s will use a lower
level security

<STD>
<Retry Attempts>
<Certificate Information>

<STD>
<Retry Attempts>
<Certificate Information>

No Certificate – No
appropriate certificate is
available.

Minor or
Critical

Note: This could
occur when a server
doesn’t know the
certificate authority
of the client’s
certificate.

<STD>
<Retry Attempts>

<STD>
<Retry Attempts>

Bad Certificate – A
certificate was corrupt,
contained signatures that
did not verify correctly,
could not authenticate
chain (i.e. no common or
cross-certified certificate
authority)

Minor or
Critical

Yes - May indicate
tampering

<STD>
<Retry Attempts>
<Certificate Information>

<STD>
<Retry Attempts>
<Certificate Information>

Unsupported Certificate –
A certificate was of an
unsupported type.

Warning

No-The certificate
may be a back level
or future level
certificate

<STD>
<Retry Attempts>
<Certificate Information>

Certificate Revoked – A
certificate was revoked by
its signer, either the end
user’s certificate or on the
CAs in the chain. The
certificate or one of the
certificate authorities in the
chain is listed on a
Certificate Revocation List
or Authority Revocation
List.

Minor Yes - May indicate
an attempt at using an
invalid server
certificate. More
likely indicates need
to update a server’s
certificate.

<STD>
<Retry Attempts>
<Certificate Information>

<STD>
<Retry Attempts>
<Certificate Information>

Certificate Expired – A
certificate has expired or is
not currently valid.

Minor Yes <STD>
<Retry Attempts>
<Certificate Information>

<STD>
<Retry Attempts>
<Certificate Information>

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

296

Certificate Unknown –
Some other (unspecified)
issue arose in processing
the certificate, rendering it
unacceptable.

Minor Yes <STD>
<Retry Attempts>
<Certificate Information>

<STD>
<Retry Attempts>
<Certificate Information>

Illegal Parameter – A field
in the handshake was out
of range or inconsistent
with other fields.

Critical Yes - May indicate
tampering, should not
be a regular
occurrence

<STD>
<Retry Attempts>
<Certificate Information>

<STD>
<Retry Attempts>
<Certificate Information>

2.5.3 Logon - Problem
Establishing GCSS-
AF Session

 Minor Yes – May indicate
an attempted session
spoofing attack, or
may indicate a server
communication path
has been interrupted

<STD>
<Retry Attempts>
<Certificate Information>
Session ID, other Session
Information
(<Session Information>)

<STD>
<Retry Attempts>
<Certificate Information>
Session ID, other Session
Information
(<Session Information>)

Success Harmless No <STD>
<Session Information>
<Certificate Information??>

 3.5.1 Logoff Normal Path

Failure Critical or
Minor

May indicate an
inconsistency in the
system's state.

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

3.5.2 Logoff Invalid
Certificate

 Critical or
Minor

Yes <STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

3.5.3 Logoff User Profile
Deleted

 Warning No-Occurs as a result
of administrative
actions.

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

3.5.4 Logoff User Profile
Altered to Disallow
Logon

 Warning No-Occurs as a result
of administrative
actions.

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

3.5.5 User Inactivity Harmless No <STD>

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

297

Timeout <Session Information>
<Certificate Information>

Success Harmless No <STD>
<Session Information>
<Certificate Information>

 4.5.1 Configure User
Profile Normal Path

Failure Critical Yes-May indicate
attempt at tampering
with a user profile.

<STD>
<Retry Attempts>
<Session Information>
<Certificate Information>

<STD>
<Retry Attempts>
<Session Information>
<Certificate Information>

4.5.2 Configure User
Profile Not Lockable
for Write Access

 Warning No – Probably
indicates another
admin is using the
profile

<STD>
<Session Information>

4.5.3 Configure User
Profile Remove
Profile when None
Exists

 Critical Yes – May indicate
another admin has
deleted the profile,
OR that an illicit user
has tampered with the
profile database

<STD>
<Session Information>

<STD>
<Session Information>

4.5.4 Configure User
Profile Update Failed

 Critical Yes-May indicate
attempt at tampering
with a user profile.

<STD>
<Retry Attempts>
<Certificate Information>
<Session Information>

<STD>
<Retry Attempts>
<Certificate Information>
<Session Information>

Success Harmless No <STD>
<Session Information>
<Certificate Information>

 5.5.1 Configure
Organizational
Profile Normal Path

Failure Critical Yes-May indicate
attempt at tampering
with an
organizational
profile.

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

5.5.2 Couldn't lock
Organizational
profile for write
access

 Warning No – Probably
indicates another
admin is using the
profile

<STD>
<Session Information>

5.5.3 Remove when there Critical Yes – May indicate <STD> <STD>

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

298

are no organizational
profiles

another admin has
deleted the profile,
OR that an illicit user
has tampered with the
profile database

<Session Information> <Session Information>

5.5.4 Organizational
Profile Update Failed

 Critical Yes-May indicate
attempt at tampering
with an organization
profile.

<STD>
<Retry Attempts>
<Certificate Information>
<Session Information>

<STD>
<Retry Attempts>
<Certificate Information>
<Session Information>

Success

Harmless No <STD>
<Session Information>

 6.5.1 Configure Security
Label Use Normal
Path Failure Critical Yes-May indicate

attempted label
tampering

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

<STD>
<Session Information>
<Retry Attempts>
<Certificate Information>

7.5.1 Single Sign-On
Normal Path

 Harmless No <STD>
<Retry Information>
<Certificate Information>
<Session Information>

7.5.2 SSO User Lacks
Access to Perform
Function

 Minor or
Critical

Yes-May indicate an
attempt at hacking
SSO

<STD>
<Retry Information>
<Certificate Information>
<Session Information>

<STD>
<Retry Information>
<Certificate Information>
<Session Information>

7.5.3 SSO System is
Unable to log into
Necessary Legacy
Applications

 Minor Yes-for administering
accounts

<STD>
<Retry Information>
<Certificate Information>
<Session Information>

<STD>
<Retry Information>
<Certificate Information>
<Session Information>

4.1.5.1 Initial Load of Parts,
Normal Path

 Harmless No <STD>
<Certificate Information>
All Part Attributes &
Security Information
(<Part Information>)

4.1.5.2 Alternate Path –
Message (BOD)
Format Mismatch

 Warning Yes – Could indicate
tampering with an
application or an

<STD>
<Part Information>
<Retry Attempts>

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

299

With Standard (DTD) attempted session
spoof, or simply a
coding problem

BOD Source, BOD
Destination
 (<BOD Information>)
Mismatched fields of DTD

4.1.5.3 Alternate Path –
Receiver (PDC)
Inoperable

 Minor Yes – Could indicate
tampering, or just a
server is down

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>

4.1.5.4 Alternate Path – Loss
of Message Transport
Mechanism (Queue
Manager)

 Critical Yes – Could indicate
several types of
attack

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Manager Name

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Manager Name

4.1.5.5 Alternate Path – Loss
of Queue Channel

 Critical Yes <STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Name

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Name

5.1.4.1 Use Part - Normal
Path

 Harmless No <STD>
<Certificate Information>
<Part Information>

5.1.4.2 Alternate Path – Port
Access Denied by
Firewall

 Critical Yes (If port access
denial is understood
by application)

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>

5.2.4.1 Update Part - Normal
Path

 Harmless No <STD>
<Certificate Information>
<Part Information>

5.2.4.2 Alternate Path –
Subscriber (base
PDC) Inoperable

 Critical Yes-Base Admin.
Should be notified of
Service Losses

<STD>
<Retry Attempts>
<BOD Information>

<STD>
<Retry Attempts>
<BOD Information>

5.2.4.3 Alternate Path – Loss
of Message Transport
Mechanism

 Critical Yes-Administrator
should be notified of
Service Losses

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Manager Name

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Manager Name

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

300

5.2.4.4 Alternate Path – Loss
of Queue Channel
(Test Case Only)

 Critical Yes-Administrator
should be notified of
Service Losses

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Name

<STD>
<Retry Attempts>
<Part Information>
<BOD Information>
Queue Name

5.2.4.5 Alternate Path –
Unauthorized
Application Publish
Request

 Critical Yes-Could indicate
attempt at
introducing rogue
data

<STD>
<Retry Attempts>
<Part Information>
CORBA Publishing Object
Name, Publishing Data,
Naming Service Used,
Other CORBA data
(<CORBA Information>)

<STD>
<Retry Attempts>
<Part Information>
<CORBA Information>

5.3.4.1 Delete Part - Normal
Path

 Harmless No <STD>
<Certificate Information>
<Part Information>
<BOD Information>

5.3.4.2 Alternate Path –
Subscriber (base
PDC) Dies After
Message Retrieval

 Minor Yes-Base Admin.
should be notified of
Service Losses

<STD>
<Retry Attempts>
<CORBA Information>

<STD>
<Retry Attempts>
<CORBA Information>

5.4.4.1 Normal Path - Order
Part

 Harmless No <STD>
<Certificate Information>
<Part Information>
<BOD Information>

5.4.4.2 Alternate Path –
Digital Signature
Error

 Minor Yes-Could indicate
attempt at message
tampering

<STD>
<Certificate Information>
<BOD Information>
<Retry Attempts>
<Part Information>

<STD>
<Certificate Information>
<BOD Information>
<Retry Attempts>
<Part Information>

5.4.4.3 Alternate Path –
Transaction Failure,
Requisition Message
Processing

 Minor Yes-Application
Administrator should
be notified of
transaction failures

<STD>
<BOD Information>
<Retry Attempts>
Requisition Information

<STD>
<BOD Information>
<Retry Attempts>
Requisition Information

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

301

5.4.4.4 Alternate Path –
Transaction Failure,
Part (PDC)
Persistence Update

 Minor Yes-Application
Administrator should
be notified of
transaction failures

<STD>
<BOD Information>
<Retry Attempts>
Persistence Information

<STD>
<BOD Information>
<Retry Attempts>
Persistence Information

5.4.4.5 Alternate Path –
Transaction Failure,
Order Database
Addition Failure

 Minor Yes-Application
Admin istrator should
be notified of
transaction failures

<STD>
<BOD Information>
<Retry Attempts>
Order Information
Database Information
(Server, Listening Port,
Instance, SID, Table(s),
Operation)

<STD>
<BOD Information>
<Retry Attempts>
Order Information
Database Information
(Server, Listening Port,
Instance, SID, Table(s),
Operation)

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

302

6.8 PKI and Key Management
Public Key Infrastructure (PKI) is a method of providing authentication and encryption
using paired public and private keys, and a “certificate”. DoD is in the process of
designing and rolling out a PKI structure to cover all personnel and systems under DoD
command. The Air Force is participating in this process, and the IF will integrate with
the resulting structure over time.

This section documents services relating to the use of keys, especially those relating to
PKI certificates and keys. As USAF is responsible for the issuance and management of
certificates, this package only addresses those services dealing with certificate and key
retrieval, utilization, and protection within GCSS-AF. Where PKI is employed on the
servers, the IBM Globabl Security Kit provides key protection.

6.8.1 User PKI
The current implementation of the IF provides support for the use of user certificates for
the purposes of authentication and confidentiality. The process of authentication and
confidentiality are provided by the client’s browser and by the Policy Director WebSEAL
server. It is necessary to have the Certificate Authorities of any valid clients to be in the
IBM Global Security Kit key database on the Policy Director WebSEAL server for client
certificate validation. This process needs to be repeated for each WebSEAL server in the
configuration. If the WebSEAL server’s certificate is not in the client’s browser as a site
certificate or if the Certificate Authority of the WebSEAL server is not in the client ’s
browser as a signer certificate, then the user will be prompted if they wish to accept the
server’s certificate for the session or forever. If the user selects forever, then the server’s
certificate is added to the site certificates in the browser’s key database.

The current IF implementation does not support verifying the user supplied certificate (or
its certificate chain) against the list of revoked certificates on the applicable CRLs.

It is not sufficient to just to have your certificate be validated, in order to be identified by
the IF. It is necessary for the Distinguished Name from the user-supplied certificate to
map to a valid Policy Director user.

6.8.2 Application PKI
The current implementation of the IF uses PKI predominantly for supporting
confidentiality services. The majority of the communications between the IF servers are
encrypted using server certificates. The majority of services use the IBM Global Security
Kit as their key repository as well as for the PKI libraries. The only exception is for

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

303

those services that do not support encryption and the Microsoft IIS Web Server that uses
its own libraries.

The IBM SecureWay Director can support authentication via the “client” certificate and
the IBM/Tivoli SecureWay Policy Director WebSEAL product can authenticate via the
Web Server’s certificate. That is, the Distinguished Name in the Web Server’s certificate
must match the Distinguished Name identified for that junction.

In the tables below, the shaded areas indicate where the IF is using PKI.

Table 39: Authentication Matrix

Path Authentication
UserID /password
♦ Individual end user’s unique “name”
♦ Individual end user’s unique password
User registry is in an LDAP Directory. WebSEAL performs a
search of secUser for a dcePrincipal=<userid> . If success,
performs an LDAP bind with resulting Distinguished Name (minus
the secAuthority=Default tag) and the user supplied password .

Browser – WebSEAL

PKI Certificate Based
♦ Client Certificate
User registry is in an LDAP Directory.
WebSEAL performs a search of the LDAP directory for an object
that matches the Distinguished Name in the certificate. If it finds
one, it looks for an attribute that maps to a Distinguished Name of a
Policy Director user. If the Distinguished Name in the map matches
a Policy Director user, then the user is authenticated.

WebSEAL – Web Server One-way SSL authentication. WebSEAL rejects the connection if
the DN in the supplied certificate from the Web Server does not
match the DN configured in the junction.

WebSEAL – Web Server/WAS AE
Servlet Engine

UserID /password
♦ Individual WebSEAL server identity
♦ Individual WebSEAL server password
WAS AE configuration is setup to use the same user registry in the
LDAP directory as Policy Director. WAS AE performs a similar
process for authenticating the WebSEAL identity as the WebSEAL
did for the end user. WebSEAL identity and password maintained in
a configuration file on each WebSEAL installation.

WebSEAL – IBM SecureWay Directory UserID /password
♦ Individual WebSEAL server identity
♦ Individual WebSEAL server password

Policy Director Servers—Policy Director
Servers
(includes WebSEAL – Security
Management Server and Authorization
Servers – Security Management Server)

UserID /password
via DCE using kerberos 5
DCE keytab file with a password stash file. See Policy Director
COTS documentation and the GCSS-AF installation procedures for
more information. Also, refer to IBM and Transarc DCE
documentation.

45 Unless otherwis e noted, all certificates support Netscape Certificate Authority generated server
certificates.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

304

Path Authentication
WAS AE Servlet Engine – IBM
SecureWay Directory

UserID /password
♦ Common WAS AE server identity
♦ Common WAS AE server password
Configured in the Global Security Settings

WAS AE Servlet Engine – Authorization
Servers

PKI Certificate·
x.509 certificate generated using the SSLSVRCFG tool during
installation/configuration. Configured in the aznapi.conf file.

WAS AE Servlet Engine – UDB (a.k.a.
IBMs DB2)

UserID /password
♦ Sas.server.props and sas.client.props WAS AE configuration

files
WAS AE Servlet Engine – WAS EE
Component Broker

UserID /password
♦ Application specific userid/password configured in the

applications property files. Procedurely this could all use the
same userid and password

WAS EE Component Broker –
Authorization Servers

PKI Certificate
• x.509 certificate generated using the SSLSVRCFG tool during

installation/configuration. Configured in the aznapi.conf file.
WAS EE Component Broker – DCE Cell
Directory Service

UserID /password
via DCE using kerberos 5
DCE keytab file with a password stash file. See Policy Director
COTS documentation and the GCSS-AF installation procedures for
more information. Also, refer to IBM and Transarc DCE
documentation.

WAS EE Component Broker – Oracle UserID /password
♦ Userid/password and connect string configured in CB SMUI.

Management Zones è <Application> Zone è Configurations
<Application> Config è RDBConnections è <Application>
Container

WAS EE Component Broker – UDB
(a.k.a. IBMs DB2)

UserID /password
♦ WAS EE Component Broker configuration file

Policy Director Servers – DCE Cell
Directory Service (CDS)

UserID /password
via DCE using kerberos 5
DCE keytab file with a password stash file. See Policy Director
COTS documentation and the GCSS-AF installation procedures for
more information. Also, refer to IBM and Transarc DCE
documentation.

WAS EE Component Broker – MQSeries
MQM

UserID /password
Userid/password and connect string configured in SMUI.
Management Zones è <Application> Zone è Configurations
<Application> Config è RDBConnections è <Application>
Container
It uses the operating system user that the application is running as if
no userid/password is supplied.

MQSeries MQM – MQSeries MQM UserID and password hardcoded in a DISA supplied Security Exit

Table 40: Confidentiality Network Traffic Matrix

Path Encryption
Browser – WebSEAL HTTPS

WebSEAL server certificate (support for Netscape CA)
Supports use of client certificates if available.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

305

Path Encryption
WebSEAL – Web Server HTTPS

WebSEAL server certificate
Web Server server certificate

Web Server -- WAS AE Servlet Engine No native encryption
The OSE Redirector mechanism does not support
encryption

WebSEAL – IBM SecureWay Directory LDAPS
WebSEAL server certificate
LDAP server certificate

Policy Director Servers -- Policy Director
Servers
(includes WebSEAL – Security
Management Server and Authorization
Servers – Security Management Server)

DCE over SSL or DCE over GSS
Policy Director Server Certificates

Policy Director Servers -- Policy Director
Servers
(includes WebSEAL – Security
Management Server and Authorization
Servers – Security Management Server)

SSL over TCP
Policy Director Server Certificates

Some communication between servers is socket based and
not DCE based.

WAS AE Servlet Engine – IBM
SecureWay Directory

LDAP (unencrypted)
SPR written – deficiency in product for support of LDAPS

WAS AE Servlet Engine – Authorization
Servers

DCE over SSL or DCE over GSS for Policy Database
Updates
SSL over TCP for access control checks.
Both use Policy Director Server Certificates

WAS AE Servlet Engine – UDB (a.k.a.
IBMs DB2)

No native encryption
WAS AE configuration/metadata/ACLs are required to be
in UDB.

WAS AE Servlet Engine – WAS EE
Component Broker

HTTPS for Authentication Process
WAS AE server certificate
WAS EE server certificate
GIIOP for Other Traffic

WAS EE Component Broker –
Authorization Servers

DCE over SSL or DCE over GSS for Policy Database
Updates
SSL over TCP for access control checks.
Both use Policy Director Server Certificates

WAS EE Component Broker – DCE Cell
Directory Service

DCE over SSL or DCE over GSS
Policy Director Server Certificates

WAS EE Component Broker – DCE
Oracle

SQL*Net via Oracle ANO
Note: Oracle ANO doesn’t use certificates for encryption.
It uses an alternate encryption mechanism

WAS EE Component Broker – UDB
(a.k.a. IBMs DB2)

No native encryption; see text below this table.
Component Broker configuration/metadata is required to be
in UDB. The GCSS-AF IF recommends that application
data be stored in an Oracle server.

Policy Director Servers – DCE Cell
Directory Service (CDS)

DCE over SSL or DCE over GSS
Policy Director Server Certificates

WAS EE Component Broker – MQSeries
MQM

N/A. Traffic isolated to same host.

MQSeries MQM – MQSeries MQM DISA current practice is to establish VPNs between
MQSeries MQMs that communicate across a WAN. The
traffic is left in the clear within a LAN.

Guide to Developing with the GCSS-AF
Integration Framework, Version 3.8
Document No. GCSS-REPORT-1997-0011

306

